
AML-IP Documentation
Release ..

eProsima

Apr 25, 2024

INTRODUCTION

1 Contacts and Commercial support 3

2 Contributing to the documentation 5

3 Structure of the documentation 7
3.1 Overview . 8
3.2 Contacts and Commercial support . 9
3.3 Contributing to the documentation . 9
3.4 Structure of the documentation . 9
3.5 AML-IP on Windows . 9
3.6 AML-IP on Linux . 9
3.7 Docker image . 10
3.8 Project Overview . 10
3.9 Collaborative Learning . 12
3.10 TensorFlow Inference . 18
3.11 TensorFlow Inference using ROSbot 2R . 27
3.12 Workload Distribution . 35
3.13 AML-IP Scenarios . 37
3.14 AML-IP Node . 40
3.15 AML-IP Tools . 60
3.16 Linux installation from sources . 63
3.17 Windows installation from sources . 69
3.18 CMake options . 76
3.19 Enabling technologies . 77
3.20 Internal Protocols . 78
3.21 Version v0.2.0 . 80
3.22 Previous Versions . 81
3.23 Glossary . 82

Index 85

i

ii

AML-IP Documentation, Release ..

eProsima AML-IP is a communications framework in charge of data exchange between Algebraic Machine Learning
(AML) nodes through local or remote networks. It is designed to allow non-experts users to create and manage a cluster
of AML nodes to exploit the distributed and concurrent learning capabilities of AML. Thus, AML-IP is a communica-
tion framework that makes the transport protocols abstracted from the user, creating a platform that communicates each
node without requiring the user to be concerned about communication issues. It also allows the creation of complex
distributed networks with one or multiple users working on the same problem.

This framework is developed as part of the ALMA project, which has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under grant agreement No 952091. The aim of the EU-funded ALMA
project is to leverage AML properties to develop a new generation of interactive, human-centric machine learning sys-
tems. These systems are expected to reduce bias and prevent discrimination, remember what they know when they
are taught something new, facilitate trust and reliability and integrate complex ethical constraints into human-artificial
intelligence systems. Furthermore, they are expected to promote distributed, collaborative learning.

INTRODUCTION 1

http://www.eprosima.com/
https://alma-ai.eu/
https://alma-ai.eu/

AML-IP Documentation, Release ..

Following are the main scenarios that the current AML-IP supports:

• Monitor Network State Scenario: Analyze the state of a network remotely.

• Workload Distribution Scenario: Distribute the machine learning training phase to multiple nodes to parallelize
heavy computation.

• Collaborative Learning Scenario: Share models between nodes without having to share the private dataset with
which the model was trained.

• Distributed Inference Scenario: Distribute large amounts of data to multiple nodes to perform inference in par-
allel.

Check section Project Overview to have a further explanation of the concepts and use cases of this project.

2 INTRODUCTION

CHAPTER

ONE

CONTACTS AND COMMERCIAL SUPPORT

Find more about us at eProsima’s webpage.

Support available at:

• Email: support@eprosima.com

• Phone: +34 91 804 34 48

3

https://eprosima.com/
mailto:support@eprosima.com

AML-IP Documentation, Release ..

4 Chapter 1. Contacts and Commercial support

CHAPTER

TWO

CONTRIBUTING TO THE DOCUMENTATION

AML-IP Documentation is an open source project, and as such all contributions, both in the form of feedback and
content generation, are most welcomed. To make such contributions, please refer to the Contribution Guidelines hosted
in our GitHub repository.

5

https://github.com/eProsima/all-docs/blob/master/CONTRIBUTING.md

AML-IP Documentation, Release ..

6 Chapter 2. Contributing to the documentation

CHAPTER

THREE

STRUCTURE OF THE DOCUMENTATION

This documentation is organized into the sections below.

• Installation Manual

• Getting Started

• Demo Examples

• User Manual

• Developer Manual

• Release Notes

This project (ALMA: Human Centric Algebraic Machine Learning) has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No 952091.

eProsima AML-IP is a communications framework in charge of data exchange between Algebraic Machine Learning
(AML) nodes through local or remote networks. It is designed to allow non-experts users to create and manage a cluster
of AML nodes to exploit the distributed and concurrent learning capabilities of AML. Thus, AML-IP is a communica-
tion framework that makes the transport protocols abstracted from the user, creating a platform that communicates each
node without requiring the user to be concerned about communication issues. It also allows the creation of complex
distributed networks with one or multiple users working on the same problem.

This framework is developed as part of the ALMA project, which has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under grant agreement No 952091. The aim of the EU-funded ALMA

7

http://www.eprosima.com/
https://alma-ai.eu/
https://alma-ai.eu/

AML-IP Documentation, Release ..

project is to leverage AML properties to develop a new generation of interactive, human-centric machine learning sys-
tems. These systems are expected to reduce bias and prevent discrimination, remember what they know when they
are taught something new, facilitate trust and reliability and integrate complex ethical constraints into human-artificial
intelligence systems. Furthermore, they are expected to promote distributed, collaborative learning.

3.1 Overview

Following are the main scenarios that the current AML-IP supports:

• Monitor Network State Scenario: Analyze the state of a network remotely.

• Workload Distribution Scenario: Distribute the machine learning training phase to multiple nodes to parallelize
heavy computation.

• Collaborative Learning Scenario: Share models between nodes without having to share the private dataset with
which the model was trained.

• Distributed Inference Scenario: Distribute large amounts of data to multiple nodes to perform inference in par-
allel.

Check section Project Overview to have a further explanation of the concepts and use cases of this project.

8 Chapter 3. Structure of the documentation

AML-IP Documentation, Release ..

3.2 Contacts and Commercial support

Find more about us at eProsima’s webpage.

Support available at:

• Email: support@eprosima.com

• Phone: +34 91 804 34 48

3.3 Contributing to the documentation

AML-IP Documentation is an open source project, and as such all contributions, both in the form of feedback and
content generation, are most welcomed. To make such contributions, please refer to the Contribution Guidelines hosted
in our GitHub repository.

3.4 Structure of the documentation

This documentation is organized into the sections below.

• Installation Manual

• Getting Started

• Demo Examples

• User Manual

• Developer Manual

• Release Notes

This project (ALMA: Human Centric Algebraic Machine Learning) has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No 952091.

3.5 AML-IP on Windows

Warning: The current version of AML-IP does not have installers for Windows platforms. Please refer to the
Windows installation from sources section to learn how to build AML-IP on Windows from sources.

3.6 AML-IP on Linux

Warning: The current version of AML-IP does not have installers for Linux platforms. Please refer to the Linux
installation from sources section to learn how to build AML-IP on Linux from sources.

3.2. Contacts and Commercial support 9

https://eprosima.com/
mailto:support@eprosima.com
https://github.com/eProsima/all-docs/blob/master/CONTRIBUTING.md

AML-IP Documentation, Release ..

3.7 Docker image

A pre-compiled image of the AML-IP is not available at this stage. However, please find instructions on how to create
your own Docker image here.

3.8 Project Overview

eProsima AML-IP is a communications framework in charge of data exchange between AML nodes through local or
remote networks. It is designed to allow non-experts users to create and manage a cluster of AML nodes to exploit the
distributed and concurrent learning capabilities of AML. Thus, AML-IP is a communication framework that abstracts
the transport protocols from the user, creating a platform that communicates each node without requiring the user to
be concerned about communication issues. It also allows the creation of complex distributed networks with one or
multiple users working on the same problem.

3.8.1 AML

AML is a cutting edge ML technology based on algebraic representations of data. Unlike statistical learning, AML
algorithms are robust regarding the statistical properties of the data and are parameter-free. This makes AML a great
candidate in the future of ML, as it is far less sensitive to statistical characteristics of the training data, and can integrate
unstructured and complex abstract information apart from the training data.

AML algorithm has several characteristics that makes it a great player in distributed learning. First, AML can be trained
in parallel from different remote machines, and can merge the training information without losing information. It can
also be shared and merged with other already trained models and share their learnt information without revealing the
training data-set.

3.8.2 AML-IP

eProsima AML-IP is a framework based on different libraries and graphical and non-graphical tools that allow to create
a network of nodes focused no different tasks of the AML environment. Every running part of the AML-IP is considered
a Node. This is an independent and distributed software that could perform a specific action.

• Independent means that it is auto-sufficient and does not require the presence of any other node.

• Distributed means that can communicate with different nodes in the network, interacting and solving tasks col-
laboratively.

• Action is every part of the AML or any satellite action required in order to perform the correct execution of the
algorithm or to support or facilitate the communication and managing of the different nodes.

These nodes are separated in different scenarios, that are explained more in detail in the following section.

10 Chapter 3. Structure of the documentation

https://github.com/eProsima/AML-IP/tree/main/docker

AML-IP Documentation, Release ..

3.8.3 Usage

AML-IP is a complex framework composed of different tools that run independently and out-of-the-box. But it also
features some libraries that allow to instantiate AML-IP entities or Nodes whose behavior and functionality must be
specified by the user. These libraries are presented in 2 main programming languages:

C++

This is the main programming language in AML-IP. C++ has been chosen because it is a very versatile and complete
language that allows to easily implement complex concepts maintaining high performance. Also Fast DDS is mainly
built in C++ and using the same programming language allows to easily interact without losing performance with the
middleware layer.

There is a public API found in AML-IP/amlip_cpp/include with all the installed headers that can be used from
the user side. The API, implementation and testing of this part of the code can be found mainly under sub-package
amlip_cpp.

3.8. Project Overview 11

https://isocpp.org/std/the-standard/
https://isocpp.org/std/the-standard/

AML-IP Documentation, Release ..

Python

This is the programming language though to be used by a final user. Python has been chosen as it is easier to work with
state-of-the-art ML projects.

Nodes and classes that the user needs to instantiate in order to implement their own code are parsed from C++ by using
SWIG tool, giving the user a Python API. The API, implementation and testing of this part of the code can be found
mainly under sub-package amlip_py.

3.8.4 Architecture and Infrastructure

AML-IP is a software project based on different programming languages. It is a public open-source project focused
to be used by the ML and scientific community. The whole project is hosted on a github repository, and can be found in
the following url: AML-IP Github repository. The code project is divided in sub-packages that can be built, installed
and tested independently.

AML-IP is a software project that does not rely on any specific hardware or Operating System, and does not require
any physical infrastructure. The storage and CI is hosted by github.

3.8.5 Testing and CI

AML-IP project is exhaustively tested with unit, integration, manual and blackbox tests that can be found within the
source code. As an open-source project, every person can and is welcome to contribute to the project by implementing,
fixing, suggesting or issuing. Every new contribution to the project must be peer reviewed by a project member before
being accepted and merged, and must fulfill all the tests and required CI .

3.9 Collaborative Learning

• Background

• Prerequisites

• Building the demo

• Explaining the demo

– Model Manager Receiver Node

– Model Manager Sender Node

• Running the demo

– Run Model Manager Receiver Node

– Run Model Manager Sender Node

12 Chapter 3. Structure of the documentation

https://peps.python.org/
https://isocpp.org/std/the-standard/
https://www.swig.org/
https://peps.python.org/
https://github.com/
https://github.com/eProsima/AML-IP
https://github.com/

AML-IP Documentation, Release ..

3.9.1 Background

This demo shows a Collaborative Learning Scenario and the AML-IP nodes involved: Model Manager Receiver Node
and Model Manager Sender Node. With these 2 nodes implemented, the user can deploy as many nodes of each kind
as desired and check the behavior of a simulated AML-IP network running. They are implemented in Python to prove
the communication between the 2 implementations.

The purpose of the demo is to show how a Sender and a Receiver node can communicate. The Receiver node awaits
model statistics from the Sender. Since the Sender doesn’t have a real AML Engine, it sends the model statistics as a
string. Upon receiving the statistics, the Receiver sends a model request, also as a string since it doesn’t have an AML
Engine. Then, the Sender converts the received model request to uppercase and sends it back as a model reply.

3.9.2 Prerequisites

Before running this demo, ensure that AML-IP is correctly installed using one of the following installation methods:

• AML-IP on Linux

• AML-IP on Windows

• Docker image

3.9.3 Building the demo

If the demo package is not compiled, please refer to Build demos or run the command below.

colcon build --packages-up-to amlip_demo_nodes

Once AML-IP packages are installed and built, import the libraries using the following command.

source install/setup.bash

3.9.4 Explaining the demo

In this section, we will delve into the details of the demo and how it works.

Model Manager Receiver Node

This is the Python code for the Model Manager Receiver Node application. It does not use real AML Models, but
strings. It is implemented in Python using amlip_py API.

This code can be found here.

The next block includes the Python header files that allow the use of the AML-IP Python API.

from amlip_py.node.ModelManagerReceiverNode import ModelManagerReceiverNode,␣
→˓ModelListener
from amlip_py.types.AmlipIdDataType import AmlipIdDataType
from amlip_py.types.ModelReplyDataType import ModelReplyDataType
from amlip_py.types.ModelRequestDataType import ModelRequestDataType
from amlip_py.types.ModelStatisticsDataType import ModelStatisticsDataType

3.9. Collaborative Learning 13

https://peps.python.org/
https://github.com/eProsima/AML-IP/blob/main/amlip_demo_nodes/amlip_collaborative_learning_demo/amlip_collaborative_learning_demo/model_receiver_custom.py

AML-IP Documentation, Release ..

Let’s continue explaining the global variables.

DOMAIN_ID variable isolates the execution within a specific domain. Nodes with the same domain ID can communicate
with each other.

DOMAIN_ID = 166

waiter is a WaitHandler that waits on a boolean value. Whenever this value is True, threads awake. Whenever it is
False, threads wait.

waiter = BooleanWaitHandler(True, False)

The CustomModelListener class listens to Model Statistics Data Type and Model Reply Data Type messages received
from a Model Manager Sender Node. This class is supposed to be implemented by the user in order to process the
messages received from other nodes in the network.

class CustomModelListener(ModelListener):

def statistics_received(
self,
statistics: ModelStatisticsDataType):

print(f'Statistics received: {statistics.to_string()}')

Store the server id of the statistics
self.server_id = statistics.server_id()

waiter.open()

def model_received(
self,
model: ModelReplyDataType) -> bool:

print(f'Model reply received from server\n'
f' solution: {model.to_string()}')

return True

The main function orchestrates the execution of the Model Manager Receiver node. It creates an instance of the Mod-
elManagerReceiverNode and starts its execution with the specified listener.

def main():
"""Execute main routine."""

Create request
data = ModelRequestDataType('MobileNet V1')

id = AmlipIdDataType('ModelManagerReceiver')
id.set_id([15, 25, 35, 45])

Create node
print('Starting Manual Test Model Manager Receiver Node Py execution. Creating Node..

→˓.')
model_receiver_node = ModelManagerReceiverNode(

id=id,
(continues on next page)

14 Chapter 3. Structure of the documentation

AML-IP Documentation, Release ..

(continued from previous page)

data=data,
domain=DOMAIN_ID)

print(f'Node created: {model_receiver_node.get_id()}. '
'Already processing models.')

model_receiver_node.start(
listener=CustomModelListener())

After starting the node, it waits for statistics to arrive from the Model Manager Sender Node.

Wait statistics
waiter.wait()

Then, it requests a model from the Model Manager Sender Node using the received server ID.

Request model
model_receiver_node.request_model(model_receiver_node.listener_.server_id)

Finally, the node stops.

model_receiver_node.stop()

Model Manager Sender Node

This is the Python code for the Model Manager Sender Node application. It does not use real AML Models, but strings.
It does not have a real AML Engine but instead the calculation is an upper-case conversion of the string received. It is
implemented in Python using amlip_py API.

This code can be found here.

The following block includes the Python header files necessary for using the AML-IP Python API.

from amlip_py.node.ModelManagerSenderNode import ModelManagerSenderNode, ModelReplier
from amlip_py.types.AmlipIdDataType import AmlipIdDataType
from amlip_py.types.ModelReplyDataType import ModelReplyDataType
from amlip_py.types.ModelRequestDataType import ModelRequestDataType

Let’s continue explaining the global variables.

DOMAIN_ID isolates the execution within a specific domain. Nodes with the same domain ID can communicate with
each other.

DOMAIN_ID = 166

waiter is a WaitHandler that waits on a boolean value. Whenever this value is True, threads awake. Whenever it is
False, threads wait.

waiter = BooleanWaitHandler(True, False)

The CustomModelReplier class listens to Model Request Data Type request messages received from a Model Manager
Receiver Node. This class is supposed to be implemented by the user in order to process the messages.

3.9. Collaborative Learning 15

https://peps.python.org/
https://github.com/eProsima/AML-IP/blob/main/amlip_demo_nodes/amlip_collaborative_learning_demo/amlip_collaborative_learning_demo/model_sender_custom.py

AML-IP Documentation, Release ..

class CustomModelReplier(ModelReplier):

def fetch_model(
self,
request: ModelRequestDataType) -> ModelReplyDataType:

reply = ModelReplyDataType(request.to_string().upper())

print(f'Model request received from client\n'
f' request: {request.to_string()}\n'
f' reply: {reply.to_string()}')

waiter.open()

return reply

The main function orchestrates the execution of the Model Manager Sender node. It creates an instance of ModelMan-
agerSenderNode.

def main():
"""Execute main routine."""

id = AmlipIdDataType('ModelManagerSender')
id.set_id([10, 20, 30, 40])

Create node
print('Starting Manual Test Model Manager Sender Node Py execution. Creating Node...

→˓')
model_sender_node = ModelManagerSenderNode(

id=id,
domain=DOMAIN_ID)

After starting the node, it publishes statistics using the publish_statistics() function, which fills a Model Statistics
Data Type and publishes it.

model_sender_node.publish_statistics(
'ModelManagerSenderStatistics',
'hello world')

Then we start the node execution, passing the previously defined CustomModelReplier() class, which is responsible
for managing the request received.

model_sender_node.start(
listener=CustomModelReplier())

Waits for the response model to be sent to the Model Manager Receiver Node.

Wait for the solution to be sent
waiter.wait()

Finally, it stops and closes the node.

model_sender_node.stop()

16 Chapter 3. Structure of the documentation

AML-IP Documentation, Release ..

3.9.5 Running the demo

This demo runs the implemented nodes in amlip_demo_nodes/amlip_collaborative_learning_demo.

Run Model Manager Receiver Node

Run the following command:

Source colcon installation
source install/setup.bash

To execute Model Manager Receiver Node
cd ~/AML-IP-ws/src/AML-IP/amlip_demo_nodes/amlip_collaborative_learning_demo/amlip_
→˓collaborative_learning_demo
python3 model_receiver_custom.py

The expected output is the following:

Starting Manual Test Model Manager Receiver Node Py execution. Creating Node...
Node created: ModelManagerReceiver.0f.19.23.2d. Already processing models.
Model reply received from server
solution: MOBILENET V1
Finishing Manual Test Model Manager Receiver Node Py execution.

Run Model Manager Sender Node

Run the following command to answer before closing:

Source colcon installation
source install/setup.bash

To execute Model Manager Sender Node
cd ~/AML-IP-ws/src/AML-IP/amlip_demo_nodes/amlip_collaborative_learning_demo/amlip_
→˓collaborative_learning_demo
python3 model_sender_custom.py

This execution expects an output similar to the one shown below:

Starting Manual Test Model Manager Sender Node Py execution. Creating Node...
Node created: ModelManagerSender.0a.14.1e.28. Already processing models.
Model request received from client
model: MobileNet V1
solution: MOBILENET V1
Finishing Manual Test Model Manager Sender Node Py execution.

3.9. Collaborative Learning 17

AML-IP Documentation, Release ..

3.10 TensorFlow Inference

• Background

• Prerequisites

• Building the demo

• Explaining the demo

– Edge Node

– Inference Node

• Run demo

– Run Edge Node

– Run Inference Node

– Next steps

• Run multiple nodes of each kind

• How to use your own model

• Troubleshooting

– TensorFlow using old API

• Next Steps

3.10.1 Background

Inference refers to the process of using a trained model to make predictions or draw conclusions based on input data.
It involves applying the learned knowledge and statistical relationships encoded in the model to new, unseen data. The
inference of an image involves passing the image through a trained AI model to obtain a classification based on the
learned knowledge and patterns within the model.

This demo shows how to implement 2 types of nodes, Inference Node and Edge Node, to perform TensorFlow inference
on a given image. With these 2 nodes implemented, the user can deploy as many nodes of each kind as desired and
check the behavior of a simulated AML-IP network running.

The demo that is presented here follows the schema of the figure below:

• TensorFlow is an end-to-end machine learning platform with pre-trained models.

• Edge Node simulates an Edge Node. It is implemented in Python using amlip_py API.

• Inference Node simulates an Inference Node. It is implemented in Python using amlip_py API.

18 Chapter 3. Structure of the documentation

https://www.tensorflow.org/
https://peps.python.org/
https://peps.python.org/

AML-IP Documentation, Release ..

3.10.2 Prerequisites

First of all, check that amlip_tensorflow_inference_demo sub-package is correctly installed. If it is not, please
refer to Build demos.

The demo requires the following tools to be installed in the system:

sudo apt install -y swig alsa-utils libopencv-dev
pip3 install -U pyttsx3 opencv-python
curl https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -o Miniconda3-
→˓latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh
For changes to take effect, close and re-open your current shell.
conda create --name tf python=3.9
conda install -c conda-forge cudatoolkit=11.8.0
mkdir -p $CONDA_PREFIX/etc/conda/activate.d
echo 'CUDNN_PATH=$(dirname $(python3 -c "import nvidia.cudnn;print(nvidia.cudnn.__file__)
→˓"))' >> $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/:$CUDNN_PATH/lib' >>
→˓$CONDA_PREFIX/etc/conda/activate.d/env_vars.sh
source $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh

Ensure that you have TensorFlow and TensorFlow Hub installed in your Python environment before proceeding. You
can install them using pip by executing the following commands:

pip3 install tensorflow tensorflow-hub tensorflow-object-detection-api nvidia-cudnn-
→˓cu11==8.6.0.163 protobuf==3.20.*

Additionally, it is required to obtain the TensorFlow model from TensorFlow Hub, follow the steps below:

cd ~/AML-IP-ws/src/AML-IP/amlip_demo_nodes/amlip_tensorflow_inference_demo/resource/
→˓tensorflow/models/
wget -O centernet_hourglass_512x512_kpts_1.tar.gz https://tfhub.dev/tensorflow/centernet/
→˓hourglass_512x512_kpts/1?tf-hub-format=compressed

(continues on next page)

3.10. TensorFlow Inference 19

https://tfhub.dev/

AML-IP Documentation, Release ..

(continued from previous page)

mkdir centernet_hourglass_512x512_kpts_1
tar -xvf centernet_hourglass_512x512_kpts_1.tar.gz -C ./centernet_hourglass_512x512_kpts_
→˓1

3.10.3 Building the demo

To build the demo, build the packages with Colcon:

colcon build --packages-up-to amlip_demo_nodes

Once AML-IP packages are installed and built, import the libraries using the following command.

source install/setup.bash

3.10.4 Explaining the demo

In this section, we will explore and explain the demo in detail.

Edge Node

Edge Node serves as the entity responsible for sending the data to be inferred to the Inference Node. The Edge Node is
typically located at the edge of a network or closer to the data source, such as a sensor or a device generating the data.

This is the Python code for the Edge Node application. This code can be found here.

The next block includes the Python header files that allow the use of the AML-IP Python API.

from amlip_py.node.AsyncEdgeNode import AsyncEdgeNode, InferenceListenerLambda
from amlip_py.types.InferenceDataType import InferenceDataType

Let’s continue explaining the global variables. The waiter allows the node to wait for the inference. DOMAIN_ID allows
the execution to be isolated because only DomainParticipants with the same Domain Id would be able to communicate
to each other.

Variable to wait to the inference
waiter = BooleanWaitHandler(True, False)

Domain ID
DOMAIN_ID = 166

The definition of the inference_received function prints the details of the received inference.

def inference_received(
inference,
task_id,
server_id):

print(f'Edge Node received inference from {server_id}')
print(f'Edge Node received inference {inference.to_string()}')
waiter.open()

We define the main function.

20 Chapter 3. Structure of the documentation

https://github.com/eProsima/AML-IP/blob/main/amlip_demo_nodes/amlip_tensorflow_inference_demo/amlip_tensorflow_inference_demo/edge_node_async.py

AML-IP Documentation, Release ..

def main():

First, we create an instance of AsyncEdgeNode. The first thing the constructor gets is the given name. Then a listener,
which is an InferenceListenerLambda object is created with the function inference_received declared above.
This function is called each we receive an inference. And also we specified the domain equal to the DOMAIN_ID
variable.

node = AsyncEdgeNode(
'AMLAsyncEdgeNode',
listener=InferenceListenerLambda(inference_received),
domain=DOMAIN_ID)

The next code block loads the image using cv2.imread based on the specified image_path. It converts the size infor-
mation and the image into bytes and combines the two to send them to the Inference node.

current_path = os.path.abspath(__file__)
image_path = current_path.split('amlip_tensorflow_inference_demo', -1)[0]\

+ 'amlip_tensorflow_inference_demo/resource/tensorflow/models/research\
/object_detection/test_images/dog.jpg'

img = cv2.imread(image_path)
width = img.shape[1]
height = img.shape[0]

Convert size to bytes
str_size = str(width) + ' ' + str(height) + ' | '
bytes_size = bytes(str_size, 'utf-8')
Convert image to bytes
img_bytes = base64.b64encode(img)
Size + images
img_size_bytes = bytes_size + img_bytes

After that, the request_inference method is called to request the inference of the image.

task_id = node.request_inference(InferenceDataType(img_size_bytes))

Finally, the program waits for the inference solution using waiter.wait.

waiter.wait()

Once the solution is received, the execution finish.

Inference Node

The Inference Node is responsible for making the inferences or predictions on the data it receives using a TensorFlow
model. The Inference Node is typically a server or a computing resource equipped with high-performance hardware
optimized for executing machine learning models efficiently.

This is the Python code for the Inference Node application. This code can be found here.

The next block includes the Python header files that allow the use of the AML-IP Python API.

from amlip_py.node.AsyncInferenceNode import AsyncInferenceNode, InferenceReplierLambda
from amlip_py.types.InferenceSolutionDataType import InferenceSolutionDataType

3.10. TensorFlow Inference 21

https://github.com/eProsima/AML-IP/blob/main/amlip_demo_nodes/amlip_tensorflow_inference_demo/resource/tensorflow/models/research/object_detection/test_images/dog.jpg
https://github.com/eProsima/AML-IP/blob/main/amlip_demo_nodes/amlip_tensorflow_inference_demo/amlip_tensorflow_inference_demo/inference_node_async.py

AML-IP Documentation, Release ..

Let’s continue explaining the global variables. DOMAIN_ID allows the execution to be isolated because only Domain-
Participants with the same Domain Id would be able to communicate to each other. tolerance sets a limit to ignore
detections with a probability less than the tolerance.

Domain ID
DOMAIN_ID = 166

Not take into account detections with less probability than tolerance
tolerance = 25

It loads the model from TensorFlow based on the specified path.

current_path = os.path.abspath(__file__)
Initialise model
path = current_path.split('amlip_tensorflow_inference_demo', -1)[0]\

+ 'amlip_tensorflow_inference_demo/resource/\
tensorflow/models/centernet_hourglass_512x512_kpts_1'
dataset = current_path.split('amlip_tensorflow_inference_demo', -1)[0]\

+ 'amlip_tensorflow_inference_demo/resource/\
tensorflow/models/research/object_detection/data/mscoco_label_map.pbtxt'

print('Model Handle at TensorFlow Hub: {}'.format(path))
print('loading model...')
hub_model = hub.load(path)

The process_inference function is responsible for computing the inference when data is received. Inference is
performed using the input data and the loaded model. Note that detected objects are filtered based on the specified
tolerance.

def process_inference(
inference,
task_id,
client_id):

Size | Image
height, width = (inference.to_string().split(' | ', 1)[0]).split()
image_str = inference.to_string().split(' | ', 1)[1]
Convert string to bytes
img_bytes = base64.b64decode(image_str)
Convert bytes to image
image = np.frombuffer((img_bytes), dtype=np.uint8).reshape((int(width), int(height),␣

→˓3))
string_inference = ''
image_np = np.array(image).reshape((1, int(width), int(height), 3))
results = hub_model(image_np)
result = {key: value.numpy() for key, value in results.items()}
category_index = label_map_util.create_category_index_from_labelmap(dataset,

use_display_
→˓name=True)

classes = (result['detection_classes'][0]).astype(int)
scores = result['detection_scores'][0]
for i in range(result['detection_boxes'][0].shape[0]):

if (round(100*scores[i]) > tolerance):
boxes = result['detection_boxes'][0]
box = tuple(boxes[i].tolist())

(continues on next page)

22 Chapter 3. Structure of the documentation

AML-IP Documentation, Release ..

(continued from previous page)

ymin, xmin, ymax, xmax = box
string_inference = string_inference + \

'Box [({}, {}), ({}, {})] {}: {}% \n' \
.format(xmin, ymin, xmax, ymax, category_index[classes[i]]['name'],

round(100*scores[i]))
print('Inference ready!')
print('sending inference: ' + string_inference)
return InferenceSolutionDataType(string_inference)

We define the main function.

def main():

We create an instance of AsyncInferenceNode. The first thing the constructor gets is the name AMLInferenceNode.
Then the listener which is an InferenceReplierLambda(process_inference). This means calling the
process_inference function to perform the inference requests. And also we specified the domain equal to the
DOMAIN_ID variable.

node = AsyncInferenceNode(
'AMLInferenceNode',
listener=InferenceReplierLambda(process_inference),
domain=DOMAIN_ID)

This starts the inference node. It will start listening for incoming inference requests and call the process_inference
function to handle them.

node.run()

Finally, waits for a SIGINT signal Ctrl+C to stop the node and close it.

def handler(signum, frame):
pass

signal.signal(signal.SIGINT, handler)
signal.pause()

node.stop()

3.10.5 Run demo

This demo explains the implemented nodes in amlip_demo_nodes/amlip_tensorflow_inference_demo.

Run Edge Node

In the first terminal, run the Edge Node with the following command:

Source colcon installation
source install/setup.bash

To execute Edge Node to send an image to inferred
(continues on next page)

3.10. TensorFlow Inference 23

AML-IP Documentation, Release ..

(continued from previous page)

cd ~/AML-IP-ws/src/amlip/amlip_demo_nodes/amlip_tensorflow_inference_demo/amlip_
→˓tensorflow_inference_demo
python3 edge_node_async.py

Take into account that this node will wait until there is an Inference Node running and available in the same LAN in
order to process the inference. The expected output is the following:

Edge Node AMLEdgeNode.fb.d4.38.13 ready.
Edge Node AMLEdgeNode.fb.d4.38.13 sending data.

Edge Node received inference from AMLInferenceNode.b8.34.4d.a3
Edge Node received inference:
Box [(0.15590962767601013, 0.21641747653484344), (0.7388607263565063, 0.
→˓7326743006706238)] bicycle: 97%
Box [(0.16968876123428345, 0.38129815459251404), (0.403958797454834, 0.
→˓9422630071640015)] dog: 92%
Box [(0.6158109307289124, 0.13117200136184692), (0.9053990244865417, 0.
→˓2978983521461487)] truck: 53%
Box [(0.6158109307289124, 0.13117200136184692), (0.9053990244865417, 0.
→˓2978983521461487)] car: 48%
Box [(0.8892407417297363, 0.19558095932006836), (0.933372974395752, 0.2684069573879242)]␣
→˓potted plant: 34%
Box [(0.0753115713596344, 0.15651819109916687), (0.13415342569351196, 0.
→˓22736744582653046)] motorcycle: 32%

Edge Node AMLEdgeNode.fb.d4.38.13 closing.

Run Inference Node

In the second terminal, run the following command to process the inference:

Source colcon installation
source install/setup.bash

To execute Inference Node with pre-trained model from TensorFlow
cd ~/AML-IP-ws/src/AML-IP/amlip_demo_nodes/amlip_tensorflow_inference_demo/amlip_
→˓tensorflow_inference_demo
python3 inference_node_async.py

The execution expects an output similar to the one shown below:

2023-02-14 14:50:42.711797: I tensorflow/core/platform/cpu_feature_guard.cc:193] This␣
→˓TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use␣
→˓the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler␣
→˓flags.
Inference Node AMLInferenceNode.b8.34.4d.a3 ready.
Model Handle at TensorFlow Hub: /home/user/AML-IP-ws/src/AML-IP/amlip_demo_nodes/amlip_
→˓tensorflow_inference_demo/resource/tensorflow/models/centernet_hourglass_512x512_kpts_1
loading model...
WARNING:absl:Importing a function (__inference_batchnorm_layer_call_and_return_
→˓conditional_losses_42408) with ops with unsaved custom gradients. Will likely fail if␣
→˓a gradient is requested. (continues on next page)

24 Chapter 3. Structure of the documentation

AML-IP Documentation, Release ..

(continued from previous page)

WARNING:absl:Importing a function (__inference_batchnorm_layer_call_and_return_
→˓conditional_losses_209416) with ops with unsaved custom gradients. Will likely fail if␣
→˓a gradient is requested.
WARNING:absl:Importing a function (__inference_batchnorm_layer_call_and_return_
→˓conditional_losses_220336) with ops with unsaved custom gradients. Will likely fail if␣
→˓a gradient is requested.
...
WARNING:absl:Importing a function (__inference_batchnorm_layer_call_and_return_
→˓conditional_losses_55827) with ops with unsaved custom gradients. Will likely fail if␣
→˓a gradient is requested.
WARNING:absl:Importing a function (__inference_batchnorm_layer_call_and_return_
→˓conditional_losses_56488) with ops with unsaved custom gradients. Will likely fail if␣
→˓a gradient is requested.
model loaded!
Selected model:tensorflow
2023-02-14 14:51:14.165305: W tensorflow/core/grappler/optimizers/loop_optimizer.cc:907]␣
→˓Skipping loop optimization for Merge node with control input: StatefulPartitionedCall/
→˓cond/then/_918/cond/Assert_2/AssertGuard/branch_executed/_1123
inference ready!
sending inference:
Box [(0.15590962767601013, 0.21641747653484344), (0.7388607263565063, 0.
→˓7326743006706238)] bicycle: 97%
Box [(0.16968876123428345, 0.38129815459251404), (0.403958797454834, 0.
→˓9422630071640015)] dog: 92%
Box [(0.6158109307289124, 0.13117200136184692), (0.9053990244865417, 0.
→˓2978983521461487)] truck: 53%
Box [(0.6158109307289124, 0.13117200136184692), (0.9053990244865417, 0.
→˓2978983521461487)] car: 48%
Box [(0.8892407417297363, 0.19558095932006836), (0.933372974395752, 0.2684069573879242)]␣
→˓potted plant: 34%
Box [(0.0753115713596344, 0.15651819109916687), (0.13415342569351196, 0.
→˓22736744582653046)] motorcycle: 32%

Inference sent to client AMLEdgeNode.fb.d4.38.13.

Warning: If you encounter an output similar to the next one, follow the set of instructions outlined below:

terminate called after throwing an instance of 'Swig::DirectorMethodException'
what(): SWIG director method error. In method 'process_inference':␣

→˓AttributeError: module 'tensorflow' has no attribute 'gfile'
Aborted (core dumped)

3.10. TensorFlow Inference 25

AML-IP Documentation, Release ..

Next steps

Based on the information acquired, we have successfully generated the next image:

3.10.6 Run multiple nodes of each kind

One of the advantages inherent to this architecture lies in its ability to support multiple models operating concurrently
across multiple Inference Node, while simultaneously requesting inferences from Edge Node in parallel. This archi-
tectural design fosters a highly efficient and scalable system, enabling the execution of diverse inference tasks in a
distributed manner.

26 Chapter 3. Structure of the documentation

AML-IP Documentation, Release ..

3.10.7 How to use your own model

To use your own model, simply download it and load it by passing the path to the function:

hub_model = hub.load(your_model_path)

3.10.8 Troubleshooting

TensorFlow using old API

Please be aware that Simple TensorFlow Serving is currently not compatible with TensorFlow 2.0 due to its reliance
on the older API. It is important to note that in TensorFlow 2.0, the gfile package has been relocated under the tf.io
module. Therefore, if you intend to utilize TensorFlow 2.0, please take into consideration this change in the package
structure and update your code accordingly. Check following issue for further information.

To update the code, please follow these steps:

1. Locate the file label_map_util.py. (default path: .local/lib/python3.10/site-packages/
object_detection/utils/label_map_util.py)

2. Navigate to line 132 within the file.

3. Replace tf.gfile.GFile with tf.io.gfile.GFile.

3.10.9 Next Steps

Now you can develop more functionalities in your application. See also this tutorial which explains how to take the
image from a ROSbot 2R Camera.

3.11 TensorFlow Inference using ROSbot 2R

• Background

• Prerequisites

• ROSbot 2R Deployment

• Working with AML-IP

– Edge Node

– Inference Node

• Run demo

– Bring up ROSbot 2R and run Edge Node

– Run Inference Node

– Teleoperate ROSbot 2R

3.11. TensorFlow Inference using ROSbot 2R 27

https://github.com/tensorflow/tensorflow/issues/31315
https://stackoverflow.com/questions/55591437/attributeerror-module-tensorflow-has-no-attribute-gfile

AML-IP Documentation, Release ..

3.11.1 Background

This document provides detailed instructions on deploying an Edge Node on a ROSbot 2R from Husarion. The Edge
Node will capture images using the Orbbec Astra camera and sends them to the Inference Node deployed on a laptop
to perform TensorFlow inference on the given image. If the TensorFlow inference detects the presence of a person with
a probability of 80% or higher, the robot will turn.

In this demo we will use the simulation of ROSbot 2R - an autonomous mobile robot by Husarion, designed for learning
ROS and for research and development purposes. It is an affordable platform that can serve as a base for a variety of
robotic applications, including inspection robots and custom service robots. The robot features a solid aluminum frame
and is equipped with a Raspberry Pi 4 with 4GB of RAM, distance sensors, an RPLIDAR A2 laser scanner, and an
RGB-D Orbbec Astra camera.

The demo that is presented here follows the scheme of the figure below:

Note: This tutorial assumes the reader has already reviewed previous tutorial, understands how Edge and Inference
Nodes work and what the installation requirements are.

28 Chapter 3. Structure of the documentation

https://husarion.com/manuals/rosbot/

AML-IP Documentation, Release ..

3.11.2 Prerequisites

Build amlip-demos:inference-tensorflow Docker Image from the workspace where the Dockerfile is located. In order
to do so, execute the following:

cd ~/AML-IP-ws/src/AML-IP/amlip_demo_nodes/amlip_tensorflow_inference_rosbot2r_demo
docker build -t amlip-demos:inference-tensorflow -f Dockerfile .

Note: Use –no-cache argument to restart build.

3.11.3 ROSbot 2R Deployment

The Docker Compose used for the demo is compose.yaml. You can find it here.

The Docker Compose launches the following containers:

• astra: allows the usage of Orbbec 3D cameras with ROS Humble. It publishes the images captured by the camera
to the /camera/color/image_raw topic. Edge Node can then subscribe to this topic to receive and process the
camera images.

astra:
image: husarion/astra:humble
network_mode: host
ipc: host
devices:
- /dev/bus/usb/
volumes:
- ./astra_params.yaml:/ros2_ws/install/astra_camera/share/astra_camera/params/astra_

→˓mini_params.yaml
privileged: true
command: ros2 launch astra_camera astra_mini.launch.py

• rosbot: starts all base functionalities for ROSbot 2R. It subscribes to the /cmd_vel topic. This topic is used to
control the movement of a robot by publishing velocity commands to it.

rosbot:
image: husarion/rosbot:humble
network_mode: host
ipc: host
privileged: true
command: ros2 launch rosbot_bringup bringup.launch.py mecanum:=False

• microros: communicates with all firmware functionalities.

microros:
image: husarion/micro-ros-agent:humble
network_mode: host
ipc: host
devices:
- ${SERIAL_PORT:?err}
environment:
- SERIAL_PORT

(continues on next page)

3.11. TensorFlow Inference using ROSbot 2R 29

https://github.com/eProsima/AML-IP/blob/main/amlip_demo_nodes/amlip_tensorflow_inference_rosbot2r_demo/compose.yaml

AML-IP Documentation, Release ..

(continued from previous page)

privileged: true
command: ros2 run micro_ros_agent micro_ros_agent serial -D $SERIAL_PORT serial -b␣

→˓576000 # -v6

• edge: is responsible for starting up the execution of the AML-IP Edge Node explained below.

edge:
image: amlip-demos:inference-tensorflow
network_mode: host
ipc: host
privileged: true
command: bash -c "sleep 5 && source ./install/setup.bash && python3 ./src/amlip/

→˓amlip_demo_nodes/amlip_tensorflow_inference_rosbot2r_demo/amlip_tensorflow_inference_
→˓rosbot2r_demo/edge_node_async.py"

The following diagram illustrates the flow of the explained code:

3.11.4 Working with AML-IP

Through this section, we will delve into the details of the demo, examining the underlying concepts and processes
involved.

Edge Node

Edge Node serves as the entity responsible for sending the data to be inferred to the Inference Node. The Edge Node is
typically located at the edge of a network or closer to the data source, such as a sensor or a device generating the data.
In this specific scenario, the data source is the camera of the robot.

The Python code for the Edge Node is explained in the previous tutorial, so here we will focus on the additional features
added to this demo. You can find the complete code here.

The next block includes the Python header files that allow the use of the AML-IP Python API and ROS 2.

30 Chapter 3. Structure of the documentation

https://github.com/eProsima/AML-IP/blob/main/amlip_demo_nodes/amlip_tensorflow_inference_rosbot2r_demo/amlip_tensorflow_inference_rosbot2r_demo/edge_node_async.py

AML-IP Documentation, Release ..

from amlip_py.node.AsyncEdgeNode import AsyncEdgeNode, InferenceListenerLambda
from amlip_py.types.InferenceDataType import InferenceDataType

from cv_bridge import CvBridge # Package to convert between ROS and OpenCV Images

from geometry_msgs.msg import Twist

from py_utils.wait.BooleanWaitHandler import BooleanWaitHandler

import rclpy
from rclpy.node import Node
from rclpy.qos import QoSDurabilityPolicy
from rclpy.qos import QoSHistoryPolicy
from rclpy.qos import QoSProfile
from rclpy.qos import QoSReliabilityPolicy

from sensor_msgs.msg import Image

Continuing, the SubscriberImage ROS 2 Node subscribes to the /camera/color/image_raw topic to receive im-
ages from a camera sensor. It converts the received ROS Image message to an OpenCV image using the CvBridge
package. The image data is stored in the image attribute of the node.

class SubscriberImage(Node):

def __init__(self):
super().__init__('subscriber_image')
custom_qos_profile = QoSProfile(

depth=4,
reliability=QoSReliabilityPolicy.BEST_EFFORT)

self.subscription = self.create_subscription(
Image,
'/camera/color/image_raw',
self.listener_callback,
custom_qos_profile)

Used to convert between ROS and OpenCV images
self.br = CvBridge()
self.image = None
self.image_arrive = False

def listener_callback(self, msg):
self.get_logger().info('I received an image!!')
Convert ROS Image message to OpenCV image
self.image = self.br.imgmsg_to_cv2(msg)
self.image_arrive = True

The PublisherVel ROS 2 Node publishes Twist messages to the /cmd_vel topic, which controls the velocity of the
ROSbot 2R. In the provided code, the turn method is implemented to set linear and angular velocities, causing the
robot to turn.

class PublisherVel(Node):

def __init__(self):
(continues on next page)

3.11. TensorFlow Inference using ROSbot 2R 31

AML-IP Documentation, Release ..

(continued from previous page)

super().__init__('publisher_velocity')
custom_qos_profile = QoSProfile(

history=QoSHistoryPolicy.KEEP_ALL,
durability=QoSDurabilityPolicy.TRANSIENT_LOCAL,
reliability=QoSReliabilityPolicy.BEST_EFFORT)

self.pub = self.create_publisher(
Twist,
'/cmd_vel',
custom_qos_profile)

def turn(self):
msg = Twist()

msg.linear.x = 0.1
msg.linear.y = 0.0
msg.linear.z = 0.0

msg.angular.x = 0.0
msg.angular.y = 0.0
msg.angular.z = -1.0

self.pub.publish(msg)

Then, the definition of turn_rosbot function initializes the PublisherVel Node and repeatedly calls the turn
method to make the ROSbot turn.

def turn_rosbot():
node = PublisherVel()

print('Turn ROSbot')
loop = 0
while rclpy.ok() and loop < 13:

node.turn()
time.sleep(0.5)
loop += 1

node.destroy_node()

After that, the check_data function extracts labels and percentages from the inference string received from the Edge
Node. It searches for the label personwith a confidence percentage greater than or equal to 80%. If a person is detected,
it calls the turn_rosbot function to make the robot turn.

def check_data(str_inference):
labels = re.findall(r'\b(\w+):', str_inference)
percentages = re.findall(r'(\d+)%', str_inference)
print('Labels: ')
print(labels)
print('Percentages: ')
print(percentages)
for i in range(len(labels)):

if (labels[i] == 'person' and int(percentages[i]) >= 80):
(continues on next page)

32 Chapter 3. Structure of the documentation

AML-IP Documentation, Release ..

(continued from previous page)

print('Found a person!')
turn_rosbot()
return

print('No person found :(')

The main function initializes the SubscriberImage Node to receive images from the ROSbot 2R camera and waits
until an image arrives before proceeding. The received image is then used to create the AsyncEdgeNode. The image
is encoded as bytes and sent to the Edge Node for inference using the request_inference method as in the previous
demo.

def main():
rclpy.init(args=None)

minimal_subscriber = SubscriberImage()

Create Node
node = AsyncEdgeNode(

'AMLAsyncEdgeNode',
listener=InferenceListenerLambda(inference_received),
domain=DOMAIN_ID)

while True:

while rclpy.ok() and not minimal_subscriber.image_arrive:
rclpy.spin_once(minimal_subscriber, timeout_sec=1)

img = minimal_subscriber.image

print(f'Async Edge Node {node.id()} ready.')

width = img.shape[1]
height = img.shape[0]

Convert size to bytes
str_size = str(width) + ' ' + str(height) + ' | '
bytes_size = bytes(str_size, 'utf-8')
Convert image to bytes
img_bytes = base64.b64encode(img)
Size + images
img_size_bytes = bytes_size + img_bytes

print(f'Edge Node {node.id()} sending data.')

task_id = node.request_inference(InferenceDataType(img_size_bytes))

print(f'Request sent with task id: {task_id}. Waiting inference...')

Wait to received solution
waiter.wait()

minimal_subscriber.image_arrive = False

(continues on next page)

3.11. TensorFlow Inference using ROSbot 2R 33

AML-IP Documentation, Release ..

(continued from previous page)

Closing
minimal_subscriber.destroy_node()
rclpy.shutdown()

print(f'Edge Node {node.id()} closing.')

Inference Node

The Inference Node is responsible for making the inferences or predictions on the data it receives using a TensorFlow
model. The Inference Node is typically a server or a computing resource equipped with high-performance hardware
optimized for executing machine learning models efficiently.

The Python code for the Inference Node is explained in the previous tutorial and can be found here.

3.11.5 Run demo

Bring up ROSbot 2R and run Edge Node

First, it is necessary to launch the docker compose compose.yaml that will activate the containers astra, rosbot,
microros and edge.

Start the containers in a new ROSbot terminal, run the following command:

cd ~/AML-IP-ws/src/AML-IP/amlip_demo_nodes/amlip_tensorflow_inference_rosbot2r_demo
docker compose up

Run Inference Node

In a terminal on your laptop, run the following command in order to process the inference:

Source colcon installation
source install/setup.bash

To execute Inference Node with pre-trained model from TensorFlow
cd ~/AML-IP-ws/src/AML-IP/amlip_demo_nodes/amlip_tensorflow_inference_rosbot2r_demo/
→˓amlip_tensorflow_inference_rosbot2r_demo
python3 inference_node_async.py

Teleoperate ROSbot 2R

Note that ROSbot 2R subscribes to the /cmd_vel topic. To teleoperate it, you can use the teleop_twist_keyboard
node, which allows you to control the robot using keyboard inputs. Follow these steps:

Source ROS 2 installation
source install/setup.bash

ros2 run teleop_twist_keyboard teleop_twist_keyboard

34 Chapter 3. Structure of the documentation

https://github.com/eProsima/AML-IP/blob/main/amlip_demo_nodes/amlip_tensorflow_inference_rosbot2r_demo/amlip_tensorflow_inference_rosbot2r_demo/inference_node_async.py

AML-IP Documentation, Release ..

3.12 Workload Distribution

This demonstrator shows how to implement 2 kind of nodes: Computing Node and Main Node. With these 2 nodes
implemented, the user can deploy as many nodes of each kind as desired and check the behavior of a simulated AML-IP
network running. They are implemented one in Python and one in C++ to demonstrate as well how to instantiate each
kind of node with different APIs, and to prove the communication between the 2 implementations.

3.12.1 Simulation

AML Mock

For this demo the actual AML Engine is not provided, and it is mocked. This Mock simulates a difficult calculation by
converting a string to uppercase and randomly waiting between 1 and 5 seconds in doing so.

Main Node

This node simulates a Main Node. It does not use real AML Jobs, but strings. It is implemented in Python using
amlip_py API. There are 2 different ways to run it, an automatic one and a manual one:

Automatic version

In this version, the python executable expects input arguments. For each argument, it will convert it to a string (str)
and send it as a Job. Once the arguments run out, it will finish execution and destroy the Node.

Manual version

In this version the python program expects to receive keyboard input. For each keyboard input received, it will convert
it to a string (str) and send it as a Job. When empty string given, it will finish execution and destroy the Node.

Computing Node

This node simulates a Computing Node. It does not use real AML Jobs, but strings. It does not have a real AML
Engine but instead the calculation is an upper-case conversion of the string received. It is implemented in C++ using
amlip_cpp API.

To run it, one integer argument is required. This will be the number of jobs this Node will answer to before finishing
its execution and being destroyed.

3.12.2 Installation

First of all, check that amlip_demo_nodes sub-package is correctly installed. If it is not, please refer to Build demos.

3.12. Workload Distribution 35

https://peps.python.org/
https://isocpp.org/std/the-standard/

AML-IP Documentation, Release ..

3.12.3 Run demo

The demo that is presented here follows the schema of the figure below:

Run Main Node

Run the following command:

Source colcon installation
source install/setup.bash

To execute Main Node to send 2 jobs
python3 ./install/amlip_demo_nodes/bin/main_node.py first_job "second job"

Take into account that this node will wait until there are Computing Nodes running and available in the same LAN in
order to solve the jobs. The expected output is the following:

Main Node AMLMainNode.aa.a5.47.fe ready.
Main Node AMLMainNode.aa.a5.47.fe sending task <first_job>.
... Waits for Computing Node
Main Node received solution from AMLComputingNode.d1.c3.86.0a for job <first_job> =>
→˓<FIRST_JOB>.
Main Node AMLMainNode.aa.a5.47.fe sending task <second job>.
Main Node received solution from AMLComputingNode.d1.c3.86.0a for job <second job> =>
→˓<SECOND JOB>.
Main Node AMLMainNode.aa.a5.47.fe closing.

Run Computing Node

Run the following command to answer 2 jobs before closing:

Source colcon installation
source install/setup.bash

To execute Computing Node to answer 2 jobs
./install/amlip_demo_nodes/bin/computing_node 2

Take into account that this node will wait until it has solved 2 different jobs. If there are more than 1 Computing Node
running, one job is only solved by one of them. This execution expects an output similar to the one shown below:

Computing Node ID{AMLComputingNode.d1.c3.86.0a} computing 2 tasks.
... Waits for Main Node
Received Job: <first_job>. Processing...
Answering Solution: <FIRST_JOB>.
Computing Node ID{AMLComputingNode.d1.c3.86.0a} answered task. 1 remaining.

(continues on next page)

36 Chapter 3. Structure of the documentation

AML-IP Documentation, Release ..

(continued from previous page)

Received Job: <second job>. Processing...
Answering Solution: <SECOND JOB>.
Computing Node ID{AMLComputingNode.d1.c3.86.0a} answered task. 0 remaining.
Computing Node ID{AMLComputingNode.d1.c3.86.0a} closing.

3.12.4 Bigger scenarios

There is no limit in the number of nodes of each kind that could run in the same network. However, take into account
that these nodes are not meant to close nicely if they do not finish their tasks correctly, thus calculate the number of
jobs sent in order for all nodes to close gently.

3.13 AML-IP Scenarios

The AML-IP framework is divided in different scenarios or use cases that allow it to exploit all the capabilities AML has
to offer. These scenarios work independently of each other and make sense separately, but can be seamlessly combined
to create a more complex network. Each of the scenarios rely on a different set of Nodes that perform the different
actions required.

In order to know more about the Node concept and their kinds, please refer to AML-IP Node section.

3.13.1 Monitor Network State Scenario

This Scenario performs the monitoring action: knowing, analyzing and debugging an AML network. Each of the
AML-IP Nodes Publish their current Status information and update it along their lifetimes. This scenario supports
subscription to this Topic in order to receive such status information, that can be processed, stored, read, etc.

Status Data Type

The Status published by the nodes has the following information:

• Node Id: Uniquely identifies a Node. Check following section.

• Current State: The current state of the node, that can be stopped, running or dropped.

• Node Kind: Specifies which kind of node is, and so to which Scenario belongs.

Nodes

This scenario involves every Node, as all of them publish the Status information. However, the only Node Kind properly
belonging to this Scenario is Status Node.

3.13. AML-IP Scenarios 37

AML-IP Documentation, Release ..

3.13.2 Workload Distribution Scenario

This Scenario performs the action of distributing a high computational effort Task in remote nodes, in order to par-
allelize the task and do not block any other important actions that may require to run in the same device. It uses the
MultiService over DDS communication to publish those tasks in an efficient way.

The Task distributed is the training data-set of an AML model. This model is stored in a Main Node and the training
data-set is divided in different Jobs, that are sent along with states of the model to Computing Nodes in order to perform
this training in parallel, reducing the workload in the Main Node host, that may require to perform other actions at the
same time.

Job Data Type

The Job Data Type represents a partial data-set and a model state. Internally, Jobs sent from a Main Node to a Comput-
ing Node are treated as byte arrays of arbitrary size. So far, the interaction with this class could be done from a void*,
a byte array or a string. From Python API, the only way to interact with it is by str type.

Note: A more specific Data Type will be implemented in future releases for efficiency improvements.

Job Solution Data Type

The Solution Data Type represents an Atomization or new model state. The Solution sent from a Computing Node to
a Main Node is treated as a bytes array of arbitrary size. So far, the interaction with this class could be done from a
void*, a byte array or a string. From Python API, the only way to interact with it is by str type.

Note: A more specific Data Type will be implemented in future releases for efficiency improvements.

3.13.3 Collaborative Learning Scenario

In this Scenario, Model Manager Receiver and Model Manager Sender nodes working on the same problem share their
locally obtained models with each other, without having to share the private datasets with which they were trained
on. This intends to lead towards a more complex and accurate model. It leverages the RPC over DDS communication
protocol/paradigm in order to exchange all required information (model requests/replies) in an efficient way.

The Model Manager Sender Nodes publish Model Statistics Data Type ‘s while the Model Manager Receiver Nodes
listen to them. When a Model Manager Receiver Node is interested in a model based on its Model Statistics Data Type,
it sends a Model Request Data Type request to the Model Manager Sender Node that sent the Model Statistics Data
Type. The Model Manager Sender Node will respond with a Model Reply Data Type.

Model Request Data Type

The Model Request Data Type represents a problem request. Internally, requests sent from a Model Manager Receiver
Node to a Model Manager Sender Node are treated as byte arrays of arbitrary size. So far, the interaction with this class
could be done from a void*, a byte array or a string.

Note: A more specific Data Type will be implemented in future releases for efficiency improvements.

38 Chapter 3. Structure of the documentation

AML-IP Documentation, Release ..

Model Reply Data Type

The Model Reply Data Type represents a problem reply with the requested model. The replies sent from a Model
Manager Sender Node to a Model Manager Receiver Node are treated as a bytes array of arbitrary size. So far, the
interaction with this class could be done from a void*, a byte array or a string.

Note: A more specific Data Type will be implemented in future releases for efficiency improvements.

Model Statistics Data Type

The Statistics Data Type represents the statistics of models, such as their number of parameters or the datasets they
were trained on. The messages sent from a Model Manager Sender Node to a Model Manager Receiver Node are treated
as a bytes array of arbitrary size. So far, the interaction with this class could be done from a void*, a byte array or a
string.

Note: A more specific Data Type will be implemented in future releases for efficiency improvements.

3.13.4 Distributed Inference Scenario

This Scenario involves the action of distributing a large amount of Data to remote nodes to perform their inferences,
in order to parallelize them and do not block any other important actions that may require to run in the same device.
By performing this action, the system ensures seamless execution of multiple tasks, optimizing overall performance
and resource utilization. It uses the MultiService over DDS to efficiently publish and distribute the data across remote
nodes, ensuring a streamlined and effective process.

The inference is performed in a Inference Node and sent to an Edge Node.

3.13. AML-IP Scenarios 39

AML-IP Documentation, Release ..

Inference Data Type

The Inference Data Type represents a partial data-set. Internally, the data sent from an Edge Node to an Inference Node
are treated as byte arrays of arbitrary size. So far, the interaction with this class could be done from a void*, a byte
array or a string. From Python API, the way to interact with it is by str and bytes type.

Inference Solution Data Type

The Inference Solution Data Type represents the inference of the data sent by the Edge Node. The Inference Solution
sent from an Inference Node to an Edge Node is treated as a bytes array of arbitrary size. So far, the interaction with
this class could be done from a void*, a byte array or a string. From Python API, the way to interact with it is by str
and bytes type.

Note: There is no real data type here, the data format inside is whatever the user wants it to be.

3.14 AML-IP Node

An AML-IP network is divided in independent stand-alone individuals named Nodes. A Node, understood as a software
piece that performs one or multiple Actions in a auto-managing way, does not require external orchestration neither a
central point of computation. These actions can be local actions such as calculations, data process, algorithm execu-
tions, etc., or communication actions as send messages, receive data, wait for data or specific status, etc. Each Node
belongs to one and only one Scenario.

There are different ways to run or to work with a Node. Some of them are applications that can be executed and perform
a fixed action. Others, however, require a user interaction as specifying the action such Node must perform depending
on its status and the data received. In this last case, the Nodes are programming Objects that can be instantiated and
customized regarding the action that must be performed.

Warning: AML-IP is a work in progress, and these interactions and usage can change along the process.

40 Chapter 3. Structure of the documentation

AML-IP Documentation, Release ..

3.14.1 Nodes attributes

Node Id

Each Node in a network has a unique Id. This Id is created by the Node name, that is given to each node once it is
created, and a randomly generated number. The name of a node must consist of less than 28 characters between 0-9
a-z A-Z _ .

Examples of Nodes Ids are: AMLIPNode.d2.24.9f.34, My_Custom_Node.58.cd.72.85, status.node_7.37.
18.f7.05.

Node Kind

Each Node belongs to a specific Kind. The kind of the node identifies it, and makes it behave and perform different
actions. There are no restrictions in the number of nodes of the same kind running in the same network. The kind of
the nodes follows the Object Oriented Programming ideas, where every Node Kind represents a class and can inherit
from other Node classes (e.g. every Node Kind inherits from ParentNode); and each running node in the network is
an instance of the class of its Kind.

3.14.2 Node Kinds

Agent Node

The Agent Node relays on the eProsima DDS Router. This tool is developed and maintained by eProsima which
enables the connection of distributed DDS networks. DDS entities such as publishers and subscribers deployed in one
geographic location and using a dedicated local network will be able to communicate with other DDS entities deployed
in different geographic areas on their own dedicated local networks as if they were all on the same network.

This node is in charge of communicating a local node or AML-IP cluster with the rest of the network in WANs. It
centralizes the WAN discovery and communication, i.e. it is the bridge for all the nodes in their LANs with the rest of
the AML-IP components.

3.14. AML-IP Node 41

https://eprosima-dds-router.readthedocs.io/en/latest/index.html

AML-IP Documentation, Release ..

Client Node

This node acts as a communication client that connects to a Server Node.

Steps

• Create a new eprosima::ddspipe::participants::types::Address object with the address port, external
address port, IP address and transport protocol.

• Instantiate the ClientNode creating an object of such class with a name, a connection address and a domain.

• Wait until Ctrl+C.

C++

// Create connection address
auto connection_address = eprosima::ddspipe::participants::types::Address(

12121,
12121,
"localhost",
eprosima::ddspipe::participants::types::TransportProtocol::udp);

// Create Client Node
eprosima::amlip::node::agent::ClientNode Client_node(

"CppClientNode_Manual",
{ connection_address },
100);

// Wait until Ctrl+C
eprosima::utils::event::SignalEventHandler<eprosima::utils::event::Signal::sigint>␣
→˓sigint_handler;
sigint_handler.wait_for_event();

Python

Create connection address
connection_address = Address(

port=12121,
external_port=12121,
domain='localhost',

(continues on next page)

42 Chapter 3. Structure of the documentation

AML-IP Documentation, Release ..

(continued from previous page)

transport_protocol=TransportProtocol_udp)

Create Client Node
ClientNode(

name='PyTestClientNode',
connection_addresses=[connection_address],
domain=100)

Wait until Ctrl+C
def handler(signum, frame):

pass
signal.signal(signal.SIGINT, handler)
signal.pause()

Server Node

This node acts as a communication server, waiting for other Client Nodes to connect to it.

Steps

• Create a new eprosima::ddspipe::participants::types::Address object with the address port, external
address port, IP address and transport protocol.

• Instantiate the ServerNode creating an object of such class with a name, a listening address and a domain.

• Wait until Ctrl+C.

C++

// Create listening address
auto listening_address = eprosima::ddspipe::participants::types::Address(

12121,
12121,
"localhost",
eprosima::ddspipe::participants::types::TransportProtocol::udp);

// Create Server Node
eprosima::amlip::node::agent::ServerNode Client_node(

(continues on next page)

3.14. AML-IP Node 43

AML-IP Documentation, Release ..

(continued from previous page)

"CppServerNode_Manual",
{ listening_address },
200);

// Wait until Ctrl+C
eprosima::utils::event::SignalEventHandler<eprosima::utils::event::Signal::sigint>␣
→˓sigint_handler;
sigint_handler.wait_for_event();

Python

Create listening address
listening_address = Address(

port=12121,
external_port=12121,
domain='localhost',
transport_protocol=TransportProtocol_udp)

Create Server Node
ServerNode(

name='PyTestServerNode',
listening_addresses=[listening_address],
domain=200)

Wait until Ctrl+C
def handler(signum, frame):

pass
signal.signal(signal.SIGINT, handler)
signal.pause()

Repeater Node

A Repeater Node can be used to repeat messages between networks, that is, the message will be forwarded using the
same network interface. This is useful to communicate across LANs.

44 Chapter 3. Structure of the documentation

AML-IP Documentation, Release ..

Steps

• Create a new eprosima::ddspipe::participants::types::Address object with the address port, external
address port, IP address and transport protocol.

• Instantiate the RepeaterNode creating an object of such class with a name, a listening address and a domain.

• Wait until Ctrl+C.

C++

// Create listening address
auto listening_address = eprosima::ddspipe::participants::types::Address(

12121,
12121,
"localhost",
eprosima::ddspipe::participants::types::TransportProtocol::udp);

// Create Repeater Node
eprosima::amlip::node::agent::RepeaterNode repeater_node(

"CppRepeaterNode_Manual",
{ listening_address });

// Wait until Ctrl+C
eprosima::utils::event::SignalEventHandler<eprosima::utils::event::Signal::sigint>␣
→˓sigint_handler;
sigint_handler.wait_for_event();

Python

Create listening address
listening_address = Address(

port=12121,
external_port=12121,
domain='localhost',
transport_protocol=TransportProtocol_udp)

Create Repeater Node
RepeaterNode(

name='PyTestRepeaterNode',
listening_addresses=[listening_address])

Wait until Ctrl+C
def handler(signum, frame):

pass
signal.signal(signal.SIGINT, handler)
signal.pause()

3.14. AML-IP Node 45

AML-IP Documentation, Release ..

Status Node

This kind of node Subscribe to Status Topic. Thus it receives every Status data from all the other Nodes in the network.
This node runs a function that will be executed with each message received. This is the main agent of Monitor Network
State Scenario.

Example of Usage

This node kind does require few interaction with the user once it is running. User must start and stop this node as
desired using methods process_status_async and stop_processing. Also, user must yield a callback (function)
that will be executed with every Status message received. By destroying the node it stops if running, and every internal
entity is correctly destroyed.

Steps

• Instantiate the Status Node creating an object of such class with a name.

• Start processing status data of the network calling process_status_async.

• Stop processing data calling stop_processing.

C++

// Create a new Status Node
auto node = eprosima::amlip::StatusNode("My_Status_Node");

// Process arrival data by printing it in stdout (defined by std::function)
node.process_status_async(

[](const eprosima::amlip::types::StatusDataType& status){ std::cout << status <<␣
→˓std::endl; });

// Do other cool things here

// Stop processing data
node.stop_processing()

Python

Create a new Status Node
node = StatusNode("My Status Node");

Process arrival data by printing it in stdout (defined by lambda)
node.process_status_async(

callback=lambda status: print(f'{status}'))

Do other cool things here

Stop processing data
node.stop_processing()

46 Chapter 3. Structure of the documentation

AML-IP Documentation, Release ..

Main Node

This kind of Node performs the active (client) action of Workload Distribution Scenario. This node is able to send
different Jobs serialized as Job Data Type and it receives a Solution once the task has been executed as Job Solution
Data Type.

Synchronous

This node kind does require active interaction with the user to perform its action. This means that once a job is sent, the
thread must wait for the solution to arrive before sending another task. Users can use method request_job_solution
to send a new Job. The thread calling this method will wait until the whole process has finished and the Solution has
arrived from the Computing Node in charge of this Job. By destroying the node every internal entity is correctly
destroyed.

Steps

• Instantiate the Main Node creating an object of such class with a name.

• Create a new JobDataType from an array of bytes.

• Send a new Job synchronously and wait for the solution by calling request_job_solution.

C++

// Create a new Main Node
auto node = eprosima::amlip::MainNode("My_Main_Node");

// Create a new job to be executed remotely
auto new_job = eprosima::amlip::JobDataType("Some Job as byte array serialized from a␣
→˓string");

// Send a Job to a remote Computing and waits for the answer
// This could be called with an id as well, and it will return the server id that send␣
→˓the solution
auto solution = node.request_job_solution(new_job);

Python

Create a new Main Node
node = MainNode("My_Main_Node")

Create a new job to be executed remotely
new_job = JobDataType("Some Job as byte array serialized from a string")

Send a Job to a remote Computing and waits for the answer
solution, server_id = node.request_job_solution(new_job)

3.14. AML-IP Node 47

AML-IP Documentation, Release ..

Asynchronous

Users can use method request_job_solution to send a new Job. The thread calling this method must wait until
the whole process has finished and the Solution has arrived from the Computing Node in charge of this data that will
process it by the Listener or callback given, and return the Solution calculated in other thread. By destroying the node
every internal entity is correctly destroyed.

Steps

• Instantiate the Asynchronous Main Node creating an object of such class with a name, a listener or callback and
a domain.

• Create a new JobDataType from an array of bytes.

• Send a new Job synchronously and wait for the solution by calling request_job_solution.

• Wait for the solution.

Python

def solution_received(
solution,
task_id,
server_id):

print(f'Solution received from server: {server_id}\n'
f' with id: {task_id}\n'
f' solution: {solution.to_string()}')

def main():
Create a new Async Main Node
node = AsyncMainNode(

'MyAsyncMainNode',
callback=solution_received,
domain=100)

Create new data to be executed remotely
data_str = '<Job Data In Py String Async [LAMBDA]>'
job_data = JobDataType(data_str)

Send data to a remote Computing Node and waits for the solution
task_id = main_node.request_job_solution(job_data)

User must wait to receive solution.
Out of scope, the node will be destroyed,
and thus the solution will not arrive.

48 Chapter 3. Structure of the documentation

AML-IP Documentation, Release ..

Computing Node

This kind of Node performs the passive (server) action of Workload Distribution Scenario. This node waits for a Job
serialized as Job Data Type, and once received it performs a calculation (implemented by the user) whose output is the
solution as Job Solution Data Type.

Synchronous

This node kind does require active interaction with the user to perform its action. This means that once a job is sent, the
thread must wait for the solution to arrive before sending another task. User can use method request_job_solution
to send a new Job. The thread calling this method will wait until the whole process has finished and the Solution
has arrived from the Computing Node in charge of this Job. By destroying the node every internal entity is correctly
destroyed.

Steps

• Instantiate the Computing Node creating an object of such class with a name.

• Create a new JobDataType from an array of bytes.

• Send a new Job synchronously and wait for the solution by calling request_job_solution.

C++

// Create a new Computing Node
auto node = eprosima::amlip::ComputingNode("My_Computing_Node");

// Create a callback to process a job and return a solution
auto process_solution = [](const eprosima::amlip::types::JobDataType&){

eprosima::amlip::types::JobSolutionDataType solution;
// Do some code that calculates the solution
return solution;

};

// Wait for 1 task from any client and answer it with process_solution callback
node.process_job(process_solution);

Python

Create a new Computing Node
node = ComputingNode("My_Computing_Node")

def process_solution():
JobSolutionDataType solution;
Do some code that calculates the solution
return solution

Wait for 1 task from any client and answer it with process_solution callback
node.process_job(callback=process_solution)

3.14. AML-IP Node 49

AML-IP Documentation, Release ..

Asynchronous

User can use method request_job_solution to send a new Job from Main Node to send new data. The thread
calling this method will wait until the whole process has finished and the Solution has arrived from the Computing
Node in charge of this Job. By destroying the node every internal entity is correctly destroyed.

Steps

• Instantiate the Asynchronous Computing Node creating an object of such class with a name, a listener or callback
and a domain.

• Wait for tasks by calling run.

Python

def process_job(
job,
task_id,
client_id):

JobSolutionDataType solution;
Do some code that calculates the solution
return solution

Create a new Async Computing Node
node = AsyncComputingNode(

'MyAsyncComputingNode',
callback=process_job,
domain=100)

node.run()

Wait until Ctrl+C

node.stop()

Edge Node

This node is able to send data serialized as Inference Data Type and it receives an Inference as Inference Solution Data
Type.

Synchronous

This node kind does require active interaction with the user to perform its action. Once the data is sent, the thread must
wait for the inference to arrive before sending another data. Users can use method request_inference to send new
data. The thread calling this method will wait until the whole process has finished and the Inference has arrived from
the Inference Node in charge of this data. By destroying the node every internal entity is correctly destroyed.

50 Chapter 3. Structure of the documentation

AML-IP Documentation, Release ..

Steps

• Instantiate the Edge Node creating an object of such class with a name.

• Create a new InferenceDataType from an array of bytes.

• Send a data synchronously and wait for the inference by calling request_inference.

C++

// Create a new Edge Node
auto node = eprosima::amlip::EdgeNode("My_Edge_Node");

// Create new data to be executed remotely
auto data = eprosima::amlip::InferenceDataType("Some data as byte array serialized from␣
→˓a string or bytes");

// Send data to a remote Inference Node and waits for the inference
// This could be called with an id as well, and it will return the server id that send␣
→˓the inference
auto solution = node.request_inference(data);

Python

Create a new Edge Node
node = EdgeNode("My_Edge_Node")

Create new data to be executed remotely
data = InferenceDataType("Some data as byte array serialized from a string or bytes")

Send data to a remote Inference Node and waits for the inference
inference, server_id = node.request_inference(data)

Asynchronous

Users can use method request_inference to send new data. The thread calling this method must wait until the whole
process has finished and the Inference has arrived from the Inference Node in charge of this data that will process it
by the Listener or callback given, and return the Inference calculated in other thread. By destroying the node every
internal entity is correctly destroyed.

Steps

• Instantiate the Asynchronous Edge Node creating an object of such class with a name, a listener or callback and
a domain.

• Create a new InferenceDataType from an array of bytes.

• Send a data synchronously calling request_inference.

• Wait for the inference.

Python

3.14. AML-IP Node 51

AML-IP Documentation, Release ..

def inference_received(
inference,
task_id,
server_id):

print(f'Data received from server: {server_id}\n'
f' with id: {task_id}\n'
f' inference: {inference.to_string()}')

def main():
Create a new Async Edge Node
node = AsyncEdgeNode(

"My_Async_Edge_Node",
listener=InferenceListenerLambda(inference_received),
domain=DOMAIN_ID)

Create new data to be executed remotely
data = InferenceDataType("Some data as byte array serialized from a string or bytes")

Send data to a remote Inference Node and waits for the inference
task_id = node.request_inference(data)

User must wait to receive solution.
Out of scope, the node will be destroyed,
and thus the solution will not arrive.

Inference Node

This node waits for data serialized as Inference Data Type, and once received it calculate the inference whose output is
the inference solution as Inference Solution Data Type and send the result back.

Synchronous

This node kind does require active interaction with the user to perform its action. This means that calling pro-
cess_inference will wait for receiving data, and will only finish when the result is sent back. User can use method
request_inference from Edge Node to send new data. The thread calling this method will wait until the whole
process has finished and the Inference has arrived from the Inference Node in charge of this data. By destroying the
node every internal entity is correctly destroyed.

Steps

• Instantiate the Inference Node creating an object of such class with a name.

• Wait for the data by calling process_inference.

• Return the inference as an InferenceSolutionDataType.

C++

// Create a new Inference Node
auto node = eprosima::amlip::InferenceNode("My_Inference_Node");

(continues on next page)

52 Chapter 3. Structure of the documentation

AML-IP Documentation, Release ..

(continued from previous page)

// Create a callback to process data and return the inference
auto engine_routine = [](const eprosima::amlip::types::InferenceDataType& dataset){

eprosima::amlip::types::InferenceSolutionDataType inference;
// Do some code that calculates the inference
return inference;

};

// Wait for 1 task from any client and answer it with process_inference callback
node.process_inference(engine_routine);

Python

Create a new Inference Node
node = InferenceNode("My_Inference_Node")

def engine_routine(dataset):
Do some code that calculates the inference
return InferenceSolutionDataType(inference_solution)

Wait for 1 task from any client and answer it with process_inference callback
node.process_inference(callback=lambda inference: engine_routine(dataset))

Asynchronous

User can use method request_inference from Edge Node to send new data. The thread calling this method must
wait until the whole process has finished and the Inference has arrived from the Inference Node in charge of this data
that will process it by the Listener or callback given, and return the Inference calculated in other thread. By destroying
the node every internal entity is correctly destroyed.

Steps

• Instantiate the Asynchronous Inference Node creating an object of such class with a name, a listener or callback
and a domain.

• Wait for the data by calling run.

Python

def process_inference(
dataset,
task_id,
client_id):

Do some code that calculates the inference
return inference_solution

def main():

Create a new Async Inference Node
node = AsyncInferenceNode(

"My_Async_Inference_Node",
listener=InferenceReplierLambda(process_inference),

(continues on next page)

3.14. AML-IP Node 53

AML-IP Documentation, Release ..

(continued from previous page)

domain=100)

inference_node.run()

Wait until Ctrl+C

inference_node.stop()

Model Manager Receiver Node

This kind of Node performs the active (client) action of Collaborative Learning Scenario. This node receives statistics
about models and sends a request if it is interested in a particular one. Then, waits for the arrival of the requested
model, serialized as Model Reply Data Type.

Example of Usage

Steps

• Create the Id of the node.

• Create the data to request.

• Instantiate the ModelManagerReceiver Node creating an object of such class with the Id and data previously
created.

• Start the execution of the node.

• Wait for statistics.

• Request the model.

• Stop the execution of the node.

C++

#include <cpp_utils/wait/BooleanWaitHandler.hpp>

#include <amlip_cpp/types/id/AmlipIdDataType.hpp>
#include <amlip_cpp/types/model/ModelRequestDataType.hpp>
#include <amlip_cpp/types/model/ModelReplyDataType.hpp>
#include <amlip_cpp/types/model/ModelStatisticsDataType.hpp>

#include <amlip_cpp/node/collaborative_learning/ModelManagerReceiverNode.hpp>

class CustomModelListener : public eprosima::amlip::node::ModelListener
{
public:

CustomModelListener(
const std::shared_ptr<eprosima::utils::event::BooleanWaitHandler>& waiter)

: waiter_(waiter)
{

(continues on next page)

54 Chapter 3. Structure of the documentation

AML-IP Documentation, Release ..

(continued from previous page)

// Do nothing
}

virtual void statistics_received (
const eprosima::amlip::types::ModelStatisticsDataType statistics) override

{
// Save the server id
server_id = statistics.server_id();

waiter_->open();

// Always request model
return true;

}

virtual bool model_received (
const eprosima::amlip::types::ModelReplyDataType model) override

{
std::cout << "Model received: " << model << " ." << std::endl;

return true;
}

std::shared_ptr<eprosima::utils::event::BooleanWaitHandler> waiter_;
eprosima::amlip::types::AmlipIdDataType server_id;

};

// Create the Id of the node
eprosima::amlip::types::AmlipIdDataType id({"ModelManagerSender"}, {10, 20, 30, 40});

// Create the data
eprosima::amlip::types::ModelRequestDataType data("MobileNet V1");

// Create ModelManagerReceiver Node
eprosima::amlip::node::ModelManagerReceiverNode model_receiver_node(id, data);

// Create waiter to wait for statistics
std::shared_ptr<eprosima::utils::event::BooleanWaitHandler> waiter =

std::make_shared<eprosima::utils::event::BooleanWaitHandler>(false, true);

// Create listener to process statistics and replies
std::shared_ptr<CustomModelListener> listener =

std::make_shared<CustomModelListener>(waiter);

// Start execution
model_receiver_node.start(listener);

// Wait for statistics
waiter->wait();

// ... do something ...

(continues on next page)

3.14. AML-IP Node 55

AML-IP Documentation, Release ..

(continued from previous page)

// Request the model
model_receiver_node.request_model(listener->server_id);

// Stop execution
model_receiver_node.stop();

Python

from py_utils.wait.BooleanWaitHandler import BooleanWaitHandler

from amlip_py.types.AmlipIdDataType import AmlipIdDataType
from amlip_py.types.ModelRequestDataType import ModelRequestDataType
from amlip_py.types.ModelReplyDataType import ModelReplyDataType
from amlip_py.types.ModelStatisticsDataType import ModelStatisticsDataType

from amlip_py.node.ModelManagerReceiverNode import ModelManagerReceiverNode,␣
→˓ModelListener

Variable to wait for the statistics
waiter = BooleanWaitHandler(True, False)

class CustomModelListener(ModelListener):

def statistics_received(
self,
statistics: ModelStatisticsDataType) -> bool:

waiter.open()

return True

def model_received(
self,
model: ModelReplyDataType) -> bool:

print(f'Model reply received from server\n'
f' solution: {model.to_string()}')

return True

Create the data
data = ModelRequestDataType('MobileNet V1')

Create the Id of the node
id = AmlipIdDataType('ModelManagerReceiver')
id.set_id([10, 20, 30, 40])

Create a new ModelManagerReceiver Node
model_receiver_node = ModelManagerReceiverNode(

id=id,
data=data,
domain=100)

(continues on next page)

56 Chapter 3. Structure of the documentation

AML-IP Documentation, Release ..

(continued from previous page)

Start execution
model_receiver_node.start(

listener=CustomModelListener())

Wait statistics
waiter.wait()

... do something ...

Request the model
model_receiver_node.request_model(model_receiver_node.listener_.server_id)

Stop execution
model_receiver_node.stop()

Model Manager Sender Node

This kind of Node performs the passive (server) action of Collaborative Learning Scenario. This node sends statistics
about the models it manages. Then, waits for a Model request serialized as Model Request Data Type. Once received,
a user-implemented callback (fetch_model) is executed, whose output should be the requested model in the form of a
Model Reply Data Type.

Example of Usage

Steps

• Create the Id of the node.

• Create the statistics to be sent.

• Instantiate the ModelManagerSender Node creating an object of such class with the Id and statistics previously
created.

• Start the execution of the node.

• Wait for a model request to arrive and be answered.

• Stop the execution of the node.

C++

#include <cpp_utils/wait/BooleanWaitHandler.hpp>

#include <amlip_cpp/types/id/AmlipIdDataType.hpp>
#include <amlip_cpp/types/model/ModelRequestDataType.hpp>
#include <amlip_cpp/types/model/ModelReplyDataType.hpp>
#include <amlip_cpp/types/model/ModelStatisticsDataType.hpp>

#include <amlip_cpp/node/collaborative_learning/ModelManagerSenderNode.hpp>

class CustomModelReplier : public eprosima::amlip::node::ModelReplier
{

(continues on next page)

3.14. AML-IP Node 57

AML-IP Documentation, Release ..

(continued from previous page)

public:

CustomModelReplier(
const std::shared_ptr<eprosima::utils::event::BooleanWaitHandler>& waiter)

: waiter_(waiter)
{

// Do nothing
}

virtual eprosima::amlip::types::ModelReplyDataType fetch_model (
const eprosima::amlip::types::ModelRequestDataType data) override

{
std::cout << "Processing data: " << data << " . Processing data..." << std::endl;

// Create new solution from data here
eprosima::amlip::types::ModelReplyDataType solution("MOBILENET V1");

std::cout << "Processed model: " << solution << " . Returning model..." <<␣
→˓std::endl;

waiter_->open();

return solution;
}

std::shared_ptr<eprosima::utils::event::BooleanWaitHandler> waiter_;
};

// Create the Id of the node
eprosima::amlip::types::AmlipIdDataType id({"ModelManagerSender"}, {66, 66, 66, 66});

// Create ModelManagerSender Node
eprosima::amlip::node::ModelManagerSenderNode model_sender_node(id);

// Create statistics data
std::string data = "hello world";
model_sender_node.publish_statistics("v0", data);

// Create waiter
std::shared_ptr<eprosima::utils::event::BooleanWaitHandler> waiter =

std::make_shared<eprosima::utils::event::BooleanWaitHandler>(false, true);

// Create listener to process requests and return replies
std::shared_ptr<CustomModelReplier> replier =

std::make_shared<CustomModelReplier>(waiter);

// Start execution
model_sender_node.start(replier);

// Wait for the solution to be sent
waiter->wait();

(continues on next page)

58 Chapter 3. Structure of the documentation

AML-IP Documentation, Release ..

(continued from previous page)

// Stop execution
model_sender_node.stop();

Python

from py_utils.wait.BooleanWaitHandler import BooleanWaitHandler

from amlip_py.types.AmlipIdDataType import AmlipIdDataType
from amlip_py.types.ModelRequestDataType import ModelRequestDataType
from amlip_py.types.ModelReplyDataType import ModelReplyDataType
from amlip_py.types.ModelStatisticsDataType import ModelStatisticsDataType

from amlip_py.node.ModelManagerSenderNode import ModelManagerSenderNode, ModelReplier

class CustomModelReplier(ModelReplier):

def fetch_model(
self,
model: ModelRequestDataType) -> ModelReplyDataType:

solution = ModelReplyDataType(model.to_string().upper())
print(f'Model request received from client\n'

f' model: {model.to_string()}\n'
f' solution: {solution.to_string()}')

waiter.open()

return solution

Create the Id of the node
id = AmlipIdDataType('ModelManagerSender')
id.set_id([66, 66, 66, 66])

Create a new ModelManagerSender Node
model_sender_node = ModelManagerSenderNode(

id=id,
domain=100)

model_sender_node.publish_statistics(
'ModelManagerSenderStatistics',
'hello world')

Start execution
model_sender_node.start(

listener=CustomModelReplier())

Wait for the solution to be sent
waiter.wait()

Stop execution
model_sender_node.stop()

3.14. AML-IP Node 59

AML-IP Documentation, Release ..

3.15 AML-IP Tools

3.15.1 Agent Tool

This tool launches an Agent Node, which is the node in charge of communicating a local node or AML-IP cluster with
the rest of the network in WANs. It centralizes the WAN discovery and communication, i.e. it is the bridge for all the
nodes in their LANs with the rest of the AML-IP components.

Building the tool

If the tool package is not compiled, please refer to Linux installation from sources using colcon or run the command
below.

colcon build --packages-up-to amlip_agent

Once AML-IP packages are installed and built, source the workspace using the following command.

source install/setup.bash

Application Arguments

The Agent Tool supports several input arguments:

60 Chapter 3. Structure of the documentation

AML-IP Documentation, Release ..

Com-
mand

Option Long
option

Value De-
fault
Value

Help -h --help
Entity -e --entity Agent Entity type. client
Debug -d --debug Enables the AML-IP logs so the execution can

be followed by internal debugging information.
Sets Log Verbosity to info and Log Filter to
AMLIP.

Log
Ver-
bosity

Set the verbosity level so only
log messages with equal or
higher importance level are
shown.

--log-verbosity warning

Log
Filter

Set a regex string as filter. --log-filter AMLIP

Name -n --name Readable File Path amlip_agent
DDS
Do-
main

-d --domain Configures the Domain Id. 0

Con-
nec-
tion
Ad-
dress

-c --connection-addressAddress to connect. 127.
0.
0.1

Con-
nec-
tion
Port

-p --connection-portAddress connection port. 12121

Lis-
tening
Ad-
dress

-l --listening-addressAddress where listen. 127.
0.
0.1

Lis-
tening
Port

-q --listening-portAddress listening port. 12121

Trans-
port

-t --transportUse only TCPv4 or UDPv4 transport. TCPv4

Help Argument

It shows the usage information of the tool.

Usage: ./agent tool

General options:
-h, --help Produce help message.
-e, --entity <client|server|repeater> Agent Entity type (Default: client).

Allowed options:
• client -> Run an Agent Client Node.
• server -> Run an Agent Server Node.
• repeater -> Run an Agent Repeater Node.

(continues on next page)

3.15. AML-IP Tools 61

AML-IP Documentation, Release ..

(continued from previous page)

Debug options:
-d, --debug Set log verbosity to Info (Using this option with -
→˓-log-filter and/or --log-verbosity will head to undefined behaviour).

--log-filter Set a Regex Filter to filter by category the info␣
→˓and warning log entries. (Default = "AMLIP").

--log-verbosity <info|warning|error>
Set a Log Verbosity Level higher or equal the␣

→˓one given (Default: warning).

Client options:
-n, --name <name> Name (Default: amlip_agent).
-d, --domain <id> DDS domain ID (Default: 0).
-c, --connection-address <address> Address to connect (Default: 127.0.0.1).
-p, --connection-port <num> Address connection port (Default: 12121).
-t, --transport <tcp|udp> Use only TCPv4 or UDPv4 transport. (Default:␣
→˓TCPv4).

Server options:
-n, --name <name> Name (Default: amlip_agent).
-d, --domain <id> DDS domain ID (Default: 0).
-l, --listening-address <address> Address where listen (Default: 127.0.0.1).
-q, --listening-port <num> Address listening port (Default: 12121).
-t, --transport <tcp|udp> Use only TCPv4 or UDPv4 transport. (Default:␣
→˓TCPv4).

Repeater options:
-n, --name <name> Name (Default: amlip_agent).
-d, --domain <id> DDS domain ID (Default: 0).
-c, --connection-address <address> Address to connect (Default: 127.0.0.1).
-l, --listening-address <address> Address where listen (Default: 127.0.0.1).
-p, --connection-port <num> Address connection port (Default: 12121).
-q, --listening-port <num> Address listening port (Default: 12121).
-t, --transport <tcp|udp> Use only TCPv4 or UDPv4 transport. (Default:␣
→˓TCPv4).

Run tool

Source the following file to setup the AML-IP environment:

source <path-to-amlip-installation>/install/setup.bash

Launching an Agent Client Node instance is as easy as executing the following command:

amlip_agent -e client -c 87.111.115.111 -p 18000 -t tcp

To launch an Agent Server Node, execute:

amlip_agent -e server -l 87.111.115.111 -q 18000 -t tcp

To launch an Agent Repeater Node, execute:

62 Chapter 3. Structure of the documentation

AML-IP Documentation, Release ..

amlip_agent -e repeater -l 87.111.115.111 -q 18000 -t tcp

Close tool

In order to stop the Agent tool, press Ctrl + C in the terminal where the process is running.

3.16 Linux installation from sources

3.16.1 Sub-packages

The AML-IP is constituted of several sub-packages. Depending on the use of those packages, some or all of them must
be built. These are the packages of AML-IP and the dependencies between them:

Sub-package Description Depends on
amlip_cpp Main C++ library with the implementation and API to create AML-IP Nodes.
amlip_swig Project to auto-generate a Python library from amlip_cpp. amlip_cpp
amlip_py Main Python library with API to create AML-IP Nodes. amlip_swig
amlip_docs Sphinx documentation project.

3.16.2 Dependencies

These are the dependencies required in the system before building AML-IP from sources.

• CMake, g++, pip, wget and git

• Asio and TinyXML2 libraries

• OpenSSL

• yaml-cpp

• SWIG

• Colcon [optional]

• Gtest [for test only]

• eProsima dependencies

CMake, g++, pip, wget and git

These packages provide the tools required to install AML-IP and its dependencies from command line. Install CMake,
g++, pip, wget and git using the package manager of the appropriate Linux distribution. For example, on Ubuntu use
the command:

sudo apt install cmake g++ pip wget git

3.16. Linux installation from sources 63

https://cmake.org
https://gcc.gnu.org/
https://pypi.org/project/pip/
https://www.gnu.org/software/wget/
https://git-scm.com/

AML-IP Documentation, Release ..

Asio and TinyXML2 libraries

Asio is a cross-platform C++ library for network and low-level I/O programming, which provides a consistent asyn-
chronous model. TinyXML2 is a simple, small and efficient C++ XML parser. Install these libraries using the package
manager of the appropriate Linux distribution. For example, on Ubuntu use the command:

sudo apt install libasio-dev libtinyxml2-dev

OpenSSL

OpenSSL is a robust toolkit for the TLS and SSL protocols and a general-purpose cryptography library. Install
OpenSSL using the package manager of the appropriate Linux distribution. For example, on Ubuntu use the com-
mand:

sudo apt install libssl-dev

yaml-cpp

yaml-cpp is a YAML parser and emitter in C++ matching the YAML 1.2 spec, and is used by DDS Router application to
parse the provided configuration files. Install yaml-cpp using the package manager of the appropriate Linux distribution.
For example, on Ubuntu use the command:

sudo apt install libyaml-cpp-dev

SWIG

SWIG is a software development tool that connects programs written in C and C++ with a variety of high-level pro-
gramming languages. In this project, it is used to wrap amlip_cpp C++ API to generate a Python library. Install SWIG
using the package manager of the appropriate Linux distribution. For example, on Ubuntu use the command:

sudo apt install swig

Colcon

Install the ROS 2 development tools (colcon and vcstool) by executing the following command:

pip3 install -U colcon-common-extensions vcstool

Note: If this fails due to an Environment Error, add the --user flag to the pip installation command.

64 Chapter 3. Structure of the documentation

https://www.openssl.org/
https://github.com/jbeder/yaml-cpp
https://www.swig.org/
https://colcon.readthedocs.io/en/released/
https://pypi.org/project/vcstool/
https://pypi.org/project/pip/

AML-IP Documentation, Release ..

Gtest

Gtest is a unit testing library for C++. For a detailed description of the Gtest installation process, please refer to the
Gtest Installation Guide.

If using colcon, it is also possible to clone the Gtest Github repository into the DDS Router workspace and compile it
as a dependency package. Add this new package to .repos file before importing the sources:

googletest-distribution:
type: git
url: https://github.com/google/googletest.git
version: release-1.12.1

eProsima dependencies

These are the eProsima libraries required for building AML-IP:

• foonathan_memory_vendor, an STL compatible C++ memory allocation library.

• fastcdr, a C++ library that serializes according to the standard CDR serialization mechanism.

• fastrtps, the core library of eProsima Fast DDS library.

• cmake_utils, an eProsima utilities library for CMake.

• cpp_utils, an eProsima utilities library for C++.

• ddsrouter_core, the eProsima DDS Router library C++.

If they are already available in the system there is no need to build them again, just source them when building the
AML-IP. If using CMake, add the already libraries installation paths to LD_LIBRARY_PATH. If using colcon, use the
following command to source them:

source <eprosima-dependencies-installation-path>/install/setup.bash

3.16.3 Installation methods

There are two main possibilities to build AML-IP from sources in Linux. One of them uses CMake and the other
colcon, an auto-build framework.

Note: Colcon version is advised for non advanced users as it is easier and neater.

Linux installation from sources using colcon

colcon is a command line tool based on CMake aimed at building sets of software packages in a tidy and easy way.
The instructions for installing the AML-IP using colcon application from sources and its required dependencies are
provided in this page.

3.16. Linux installation from sources 65

https://github.com/google/googletest
https://github.com/google/googletest
https://github.com/google/googletest
https://colcon.readthedocs.io/en/released/
https://github.com/google/googletest
https://cmake.org
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://colcon.readthedocs.io/en/released/
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://colcon.readthedocs.io/en/released/

AML-IP Documentation, Release ..

Installation

Follow the instructions below to build eProsima AML-IP, after making sure all required dependencies are installed in
your system (Dependencies).

Download eProsima dependencies

1. Create a AML-IP directory and download the .repos file that will be used to install AML-IP and its dependencies:

mkdir -p ~/AML-IP/src
cd ~/AML-IP
wget https://raw.githubusercontent.com/eProsima/AML-IP/main/amlip.repos
vcs import src < amlip.repos

Note: In case there are already some eProsima libraries installed in the system, it is not required to download
and build every dependency in the .repos file, but just those projects that are not already in the system. Refer
to section eProsima dependencies in order to check how to source those libraries.

Build packages

1. Build the packages:

colcon build --packages-up-to-regex amlip

Note: Not all the sub-packages of all the dependencies are required. In order to build only the packages required,
use the colcon option --packages-up-to <package-to-build>. e.g. the AML-IP C++ library is completely built
using --packages-up-to amlip_cpp For more details about the colcon available arguments, please refer to packages
selection page of the colcon manual.

Note: Being based on CMake, it is possible to pass the CMake configuration options to the colcon build command.
For more information on the specific syntax, please refer to the CMake specific arguments page of the colcon manual.
For more details about the available CMake options, please refer to the CMake options section.

Run Tests

Tests are not automatically built within the AML-IP project. Use CMake option BUILD_TESTS when building the
project in order to activate tests. This could also be done by a colcon.meta file to only activate tests in the desired
packages.

1. Build the packages with tests:

colcon build --packages-select-regex amlip --cmake-args "-DBUILD_TESTS=ON"

2. Run tests. Use --packages-select <package-name> to only execute tests of a specific package:

66 Chapter 3. Structure of the documentation

https://colcon.readthedocs.io/en/released/
https://colcon.readthedocs.io/en/released/
https://colcon.readthedocs.io/en/released/reference/package-selection-arguments.html
https://colcon.readthedocs.io/en/released/reference/package-selection-arguments.html
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://cmake.org
https://colcon.readthedocs.io/en/released/reference/verb/build.html#cmake-specific-arguments
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://cmake.org
https://colcon.readthedocs.io/en/released/user/configuration.html#meta-files

AML-IP Documentation, Release ..

colcon test --event-handlers=console_direct+ --packages-select amlip_cpp

Source installation

To source the installation of the previously built AML-IP (in order to use its tools or link against it), use the following
command:

source install/setup.bash

Build demos

There is a demo sub-package that can be installed along with the project. In order to install this package use one of
these 2 commands:

To build all sub-packages
colcon build

To only build demo package and its dependencies
colcon build --packages-up-to amlip_demo_nodes

Linux installation from sources using CMake

The instructions for installing the AML-IP using CMake from sources and its required dependencies are provided in
this page. This section explains how to compile AML-IP with CMake, either locally or globally.

Local installation

1. Create a AML-IP directory where to download and build AML-IP and its dependencies:

mkdir -p ~/AML-IP/src
mkdir -p ~/AML-IP/build
cd ~/AML-IP
wget https://raw.githubusercontent.com/eProsima/AML-IP/main/amlip.repos
vcs import src < amlip.repos

2. Compile all dependencies using CMake.

• Foonathan memory

cd ~/AML-IP
mkdir build/foonathan_memory_vendor
cd build/foonathan_memory_vendor
cmake ~/AML-IP/src/foonathan_memory_vendor -DCMAKE_INSTALL_PREFIX=~/AML-
→˓IP/install -DBUILD_SHARED_LIBS=ON
cmake --build . --target install

• Fast CDR

3.16. Linux installation from sources 67

https://cmake.org
https://cmake.org
https://cmake.org
https://github.com/foonathan/memory
https://github.com/eProsima/Fast-CDR

AML-IP Documentation, Release ..

cd ~/AML-IP
mkdir build/fastcdr
cd build/fastcdr
cmake ~/AML-IP/src/fastcdr -DCMAKE_INSTALL_PREFIX=~/AML-IP/install
cmake --build . --target install

• Fast DDS

cd ~/AML-IP
mkdir build/fastdds
cd build/fastdds
cmake ~/AML-IP/src/fastdds -DCMAKE_INSTALL_PREFIX=~/AML-IP/install -
→˓DCMAKE_PREFIX_PATH=~/AML-IP/install
cmake --build . --target install

• Dev Utils

cmake_utils
cd ~/AML-IP
mkdir build/cmake_utils
cd build/cmake_utils
cmake ~/AML-IP/src/dev-utils/cmake_utils -DCMAKE_INSTALL_PREFIX=~/AML-IP/
→˓install -DCMAKE_PREFIX_PATH=~/AML-IP/install
cmake --build . --target install

cpp_utils
cd ~/AML-IP
mkdir build/cpp_utils
cd build/cpp_utils
cmake ~/AML-IP/src/dev-utils/cpp_utils -DCMAKE_INSTALL_PREFIX=~/AML-IP/
→˓install -DCMAKE_PREFIX_PATH=~/AML-IP/install
cmake --build . --target install

• DDS Router

ddsrouter_core
cd ~/AML-IP
mkdir build/ddsrouter_core
cd build/ddsrouter_core
cmake ~/AML-IP/src/ddsrouter/ddsrouter_core -DCMAKE_INSTALL_PREFIX=~/AML-
→˓IP/install -DCMAKE_PREFIX_PATH=~/AML-IP/install
cmake --build . --target install

3. Once all dependencies are installed, install AML-IP:

amlip_cpp
cd ~/AML-IP
mkdir build/amlip_cpp
cd build/amlip_cpp
cmake ~/AML-IP/src/amlip/amlip_cpp -DCMAKE_INSTALL_PREFIX=~/AML-IP/install -DCMAKE_
→˓PREFIX_PATH=~/AML-IP/install
cmake --build . --target install

(continues on next page)

68 Chapter 3. Structure of the documentation

https://github.com/eProsima/Fast-DDS
https://github.com/eProsima/dev-utils
https://github.com/eProsima/DDS-Router

AML-IP Documentation, Release ..

(continued from previous page)

amlip_swig
cd ~/AML-IP
mkdir build/amlip_swig
cd build/amlip_swig
cmake ~/AML-IP/src/amlip/amlip_swig -DCMAKE_INSTALL_PREFIX=~/AML-IP/install -DCMAKE_
→˓PREFIX_PATH=~/AML-IP/install
cmake --build . --target install

amlip_py
cd ~/AML-IP
mkdir install/amlip_py
pip3 install --editable ~/AML-IP/src/amlip/amlip_py/ --target install/amlip_py

Note: By default, AML-IP does not compile tests. However, they can be activated by downloading and installing Gtest
and building with CMake option -DBUILD_TESTS=ON.

Global installation

To install AML-IP system-wide instead of locally, remove all the flags that appear in the configuration
steps of Fast-CDR, Fast-DDS, DDS-Router, and AML-IP, and change the first in the configuration step of
foonathan_memory_vendor to the following:

-DCMAKE_INSTALL_PREFIX=/usr/local/ -DBUILD_SHARED_LIBS=ON

3.17 Windows installation from sources

3.17.1 Sub-packages

The AML-IP is constituted of several sub-packages. Depending on the use of those packages, some or all of them must
be built. These are the packages of AML-IP and the dependencies between them:

Sub-package Description Depends on
amlip_cpp Main C++ library with the implementation and API to create AML-IP Nodes.
amlip_swig Project to auto-generate a Python library from amlip_cpp. amlip_cpp
amlip_py Main Python library with API to create AML-IP Nodes. amlip_swig
amlip_docs Sphinx documentation project.

3.17. Windows installation from sources 69

https://github.com/google/googletest

AML-IP Documentation, Release ..

3.17.2 Dependencies

The installation of eProsima AML-IP in a Windows environment from sources requires the following tools to be in-
stalled in the system:

• Visual Studio

• Chocolatey

• CMake, pip3, wget and git

• Asio and TinyXML2 libraries

• OpenSSL

• yaml-cpp

• Colcon [optional]

• Gtest [for test only]

• eProsima dependencies

Visual Studio

Visual Studio is required to have a C++ compiler in the system. For this purpose, make sure to check the Desktop
development with C++ option during the Visual Studio installation process.

If Visual Studio is already installed but the Visual C++ Redistributable packages are not, open Visual Studio and go to
Tools -> Get Tools and Features and in the Workloads tab enable Desktop development with C++. Finally,
click Modify at the bottom right.

Chocolatey

Chocolatey is a Windows package manager. It is needed to install some of eProsima AML-IP’s dependencies. Down-
load and install it directly from the website.

CMake, pip3, wget and git

These packages provide the tools required to install eProsima AML-IP and its dependencies from command line. Down-
load and install CMake, pip3, wget and git by following the instructions detailed in the respective websites. Once
installed, add the path to the executables to the PATH from the Edit the system environment variables control panel.

Asio and TinyXML2 libraries

Asio is a cross-platform C++ library for network and low-level I/O programming, which provides a consistent asyn-
chronous model. TinyXML2 is a simple, small and efficient C++ XML parser. They can be downloaded directly from
the links below:

• Asio

• TinyXML2

After downloading these packages, open an administrative shell with PowerShell and execute the following command:

choco install -y -s <PATH_TO_DOWNLOADS> asio tinyxml2

where <PATH_TO_DOWNLOADS> is the folder into which the packages have been downloaded.

70 Chapter 3. Structure of the documentation

https://visualstudio.microsoft.com/
https://chocolatey.org/
https://cmake.org
https://docs.python.org/3/installing/index.html
https://www.gnu.org/software/wget/
https://git-scm.com/
https://github.com/ros2/choco-packages/releases/download/2020-02-24/asio.1.12.1.nupkg
https://github.com/ros2/choco-packages/releases/download/2020-02-24/tinyxml2.6.0.0.nupkg

AML-IP Documentation, Release ..

OpenSSL

OpenSSL is a robust toolkit for the TLS and SSL protocols and a general-purpose cryptography library. Down-
load and install the latest OpenSSL version for Windows at this link. After installing, add the environment variable
OPENSSL_ROOT_DIR pointing to the installation root directory.

For example:

OPENSSL_ROOT_DIR=C:\Program Files\OpenSSL-Win64

yaml-cpp

yaml-cpp is a YAML parser and emitter in C++ matching the YAML 1.2 spec, and is used by DDS Router application to
parse the provided configuration files. From an administrative shell with PowerShell, execute the following commands
in order to download and install yaml-cpp for Windows:

git clone --branch yaml-cpp-0.7.0 https://github.com/jbeder/yaml-cpp
cmake -DCMAKE_INSTALL_PREFIX='C:\Program Files\yamlcpp' -B build\yamlcpp yaml-cpp
cmake --build build\yamlcpp --target install # If building in Debug mode, add --
→˓config Debug

SWIG

SWIG is a software development tool that connects programs written in C and C++ with a variety of high-level pro-
gramming languages. In this project, it is used to wrap amlip_cpp C++ API to generate a Python library. Install SWIG
using the package manager of the appropriate Linux distribution. For example, on Ubuntu use the command:

choco install swig --allow-downgrade --version=4.0.2.04082020

Colcon

colcon is a command line tool based on CMake aimed at building sets of software packages. Install the ROS 2 devel-
opment tools (colcon and vcstool) by executing the following command:

pip3 install -U colcon-common-extensions vcstool

Note: If this fails due to an Environment Error, add the --user flag to the pip3 installation command.

Gtest

Gtest is a unit testing library for C++. By default, DDS Router does not compile tests. It is possible to activate them
with the opportune CMake options when calling colcon or CMake. For more details, please refer to the CMake options
section.

Run the following commands on your workspace to install Gtest.

3.17. Windows installation from sources 71

https://www.openssl.org/
https://slproweb.com/products/Win32OpenSSL.html
https://github.com/jbeder/yaml-cpp
https://www.swig.org/
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://colcon.readthedocs.io/en/released/
https://pypi.org/project/vcstool/
https://colcon.readthedocs.io/en/released/reference/verb/build.html#cmake-options
https://colcon.readthedocs.io/en/released/
https://cmake.org

AML-IP Documentation, Release ..

git clone https://github.com/google/googletest.git
cmake -DCMAKE_INSTALL_PREFIX='C:\Program Files\gtest' -Dgtest_force_shared_crt=ON -
→˓DBUILD_GMOCK=ON ^

-B build\gtest -A x64 -T host=x64 googletest
cmake --build build\gtest --config Release --target install

or refer to the Gtest Installation Guide for a detailed description of the Gtest installation process.

eProsima dependencies

These are the eProsima libraries required for building AML-IP:

• foonathan_memory_vendor, an STL compatible C++ memory allocation library.

• fastcdr, a C++ library that serializes according to the standard CDR serialization mechanism.

• fastrtps, the core library of eProsima Fast DDS library.

• cmake_utils, an eProsima utilities library for CMake.

• cpp_utils, an eProsima utilities library for C++.

• ddsrouter_core, the eProsima DDS Router library C++.

If it already exists in the system an installation of these libraries there is no need to build them again, just source them
when building the AML-IP. If using CMake, add the already libraries installation paths to PATH. If using colcon, use
the following command to source them:

source <eprosima-dependencies-installation-path>/install/setup.bash

3.17.3 Installation methods

There are two main possibilities to build AML-IP from sources in Windows. One of them uses CMake and the other
colcon, an auto-build framework.

Note: Colcon version is advised for non advanced users as it is easier and neater.

Windows installation from sources using colcon

colcon is a command line tool based on CMake aimed at building sets of software packages in a tidy and easy way.
The instructions for installing the AML-IP using colcon application from sources and its required dependencies are
provided in this page.

72 Chapter 3. Structure of the documentation

https://github.com/google/googletest
https://cmake.org
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://colcon.readthedocs.io/en/released/
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://colcon.readthedocs.io/en/released/

AML-IP Documentation, Release ..

Installation

This section explains how to install AML-IP using colcon.

Download eProsima dependencies

1. Create a AML-IP directory and download the .repos file that will be used to install AML-IP and its dependencies:

mkdir <path\to\user\workspace>\AML-IP
cd <path\to\user\workspace>\AML-IP
mkdir src
wget https://raw.githubusercontent.com/eProsima/AML-IP/main/amlip.repos
vcs import src < amlip.repos

Note: In case there are already some eProsima libraries installed in the system, it is not required to download
and build every dependency in the .repos file, but just those projects that are not already in the system. Refer
to section eProsima dependencies in order to check how to source those libraries.

Build packages

1. Build the packages:

colcon build --packages-up-to-regex amlip

Note: Not all the sub-packages of all the dependencies are required. In order to build only the packages required,
use the colcon option --packages-up-to <package-to-build>. e.g. the AML-IP C++ library is completely built
using --packages-up-to amlip_cpp For more details about the colcon available arguments, please refer to packages
selection page of the colcon manual.

Note: Being based on CMake, it is possible to pass the CMake configuration options to the colcon build command.
For more information on the specific syntax, please refer to the CMake specific arguments page of the colcon manual.
For more details about the available CMake options, please refer to the CMake options section.

Run Tests

Tests are not automatically built within the AML-IP project. Use CMake option BUILD_TESTS when building the
project in order to activate tests. This could also be done by a colcon.meta file to only activate tests in the desired
packages.

1. Build the packages with tests:

colcon build --packages-select-regex amlip --cmake-args "-DBUILD_TESTS=ON"

2. Run tests. Use --packages-select <package-name> to only execute tests of a specific package:

3.17. Windows installation from sources 73

https://colcon.readthedocs.io/en/released/
https://colcon.readthedocs.io/en/released/
https://colcon.readthedocs.io/en/released/
https://colcon.readthedocs.io/en/released/reference/package-selection-arguments.html
https://colcon.readthedocs.io/en/released/reference/package-selection-arguments.html
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://cmake.org
https://colcon.readthedocs.io/en/released/reference/verb/build.html#cmake-specific-arguments
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://cmake.org
https://colcon.readthedocs.io/en/released/user/configuration.html#meta-files

AML-IP Documentation, Release ..

colcon test --event-handlers=console_direct+ --packages-select amlip_cpp

Source installation

To source the installation of the AML-IP previously built in order to link it to another built or to use its tools, use the
following command:

• Command prompt:

install/setup.bat

• PowerShell:

install/setup.ps1

Build demos

There is a demo sub-package that can be installed along with the project. In order to install this package use one of
these 2 commands:

To build all sub-packages
colcon build

To only build demo package and its dependencies
colcon build --packages-up-to amlip_demo_nodes

Windows installation from sources using CMake

The instructions for installing the AML-IP using CMake from sources and its required dependencies are provided in
this page. This section explains how to compile AML-IP with CMake, either locally or globally.

Local installation

1. Open a command prompt, and create a AML-IP directory where to download and build AML-IP and its depen-
dencies:

mkdir <path\to\user\workspace>\AML-IP
mkdir <path\to\user\workspace>\AML-IP\src
mkdir <path\to\user\workspace>\AML-IP\build
cd <path\to\user\workspace>\AML-IP
wget https://raw.githubusercontent.com/eProsima/AML-IP/main/amlip.repos
vcs import src < amlip.repos

2. Compile all dependencies using CMake.

• Foonathan memory

74 Chapter 3. Structure of the documentation

https://cmake.org
https://cmake.org
https://cmake.org
https://github.com/foonathan/memory

AML-IP Documentation, Release ..

cd <path\to\user\workspace>\AML-IP
mkdir build\foonathan_memory_vendor
cd build\foonathan_memory_vendor
cmake <path\to\user\workspace>\AML-IP\src\foonathan_memory_vendor -
→˓DCMAKE_INSTALL_PREFIX=<path\to\user\workspace>\AML-IP\install ^

-DBUILD_SHARED_LIBS=ON
cmake --build . --config Release --target install

• Fast CDR

cd <path\to\user\workspace>\AML-IP
mkdir build\fastcdr
cd build\fastcdr
cmake <path\to\user\workspace>\AML-IP\src\fastcdr -DCMAKE_INSTALL_PREFIX=
→˓<path\to\user\workspace>\AML-IP\install
cmake --build . --config Release --target install

• Fast DDS

cd <path\to\user\workspace>\AML-IP
mkdir build\fastdds
cd build\fastdds
cmake <path\to\user\workspace>\AML-IP\src\fastdds -DCMAKE_INSTALL_PREFIX=
→˓<path\to\user\workspace>\AML-IP\install ^

-DCMAKE_PREFIX_PATH=<path\to\user\workspace>\AML-IP\install
cmake --build . --config Release --target install

• Dev Utils

cmake_utils
cd <path\to\user\workspace>\AML-IP
mkdir build\cmake_utils
cd build\cmake_utils
cmake <path\to\user\workspace>\AML-IP\src\dev-utils\cmake_utils -DCMAKE_INSTALL_
→˓PREFIX=<path\to\user\workspace>\AML-IP\install ^

-DCMAKE_PREFIX_PATH=<path\to\user\workspace>\AML-IP\install
cmake --build . --config Release --target install

cpp_utils
cd <path\to\user\workspace>\AML-IP
mkdir build\cpp_utils
cd build\cpp_utils
cmake <path\to\user\workspace>\AML-IP\src\dev-utils\cpp_utils -DCMAKE_INSTALL_
→˓PREFIX=<path\to\user\workspace>\AML-IP\install ^

-DCMAKE_PREFIX_PATH=<path\to\user\workspace>\AML-IP\install
cmake --build . --config Release --target install

• DDS Router

ddsrouter_core
cd <path\to\user\workspace>\AML-IP
mkdir build\ddsrouter_core
cd build\ddsrouter_core

(continues on next page)

3.17. Windows installation from sources 75

https://github.com/eProsima/Fast-CDR
https://github.com/eProsima/Fast-DDS
https://github.com/eProsima/dev-utils
https://github.com/eProsima/DDS-Router

AML-IP Documentation, Release ..

(continued from previous page)

cmake <path\to\user\workspace>\AML-IP\src\ddsrouter\ddsrouter_core -
→˓DCMAKE_INSTALL_PREFIX=<path\to\user\workspace>\AML-IP\install ^

-DCMAKE_PREFIX_PATH=<path\to\user\workspace>\AML-IP\install
cmake --build . --config Release --target install

3. Once all dependencies are installed, install AML-IP:

amlip_cpp
cd ~/AML-IP
mkdir build/amlip_cpp
cd build/amlip_cpp
cmake ~/AML-IP/src/amlip/amlip_cpp -DCMAKE_INSTALL_PREFIX=~/AML-IP/install -DCMAKE_
→˓PREFIX_PATH=~/AML-IP/install
cmake --build . --target install

amlip_swig
cd ~/AML-IP
mkdir build/amlip_swig
cd build/amlip_swig
cmake ~/AML-IP/src/amlip/amlip_swig -DCMAKE_INSTALL_PREFIX=~/AML-IP/install -DCMAKE_
→˓PREFIX_PATH=~/AML-IP/install
cmake --build . --target install

amlip_py
cd ~/AML-IP
mkdir install/amlip_py
pip3 install --editable ~/AML-IP/src/amlip/amlip_py/ --target install/amlip_py

Note: By default, AML-IP does not compile tests. However, they can be activated by downloading and installing Gtest
and building with CMake option -DBUILD_TESTS=ON.

Global installation

To install AML-IP system-wide instead of locally, remove all the flags that appear in the configuration
steps of Fast-CDR, Fast-DDS, AML-IP, and AML-IP, and change the first in the configuration step of
foonathan_memory_vendor to the following:

-DCMAKE_INSTALL_PREFIX=/usr/local/ -DBUILD_SHARED_LIBS=ON

3.18 CMake options

eProsima AML-IP provides numerous CMake options for changing the behavior and configuration of AML-IP packages
built with CMake. These options allow the developer to enable/disable certain AML-IP settings by defining these
options to ON/OFF or a string value at the CMake execution.

Warning: These options are only for advanced developers who installed eProsima AML-IP from sources.

76 Chapter 3. Structure of the documentation

https://github.com/google/googletest

AML-IP Documentation, Release ..

Option Description Pos-
sible
values

Default

CMAKE_BUILD_TYPECMake optimization build type. Release
Debug

Release

BUILD_ALL Build all AML-IP sub-packages. Setting to ON sets to ON BUILD_TOOL,
BUILD_LIBRARY, and BUILD_DOCS.

OFF ON OFF

BUILD_LIBRARYBuild the AML-IP libraries sub-packages. It is set to ON if BUILD_ALL is set
to ON.

OFF ON ON

BUILD_TOOLBuild the AML-IP tools sub-packages. It is set to ON if BUILD_ALL is set to
ON.

OFF ON ON

BUILD_DOCSBuild the AML-IP documentation sub-packages. It is set to ON if BUILD_ALL
is set to ON.

OFF ON OFF

BUILD_TESTSBuild the AML-IP application and documentation tests. Setting
BUILD_TESTS to ON sets BUILD_ALL, BUILD_LIBRARY_TESTS,
BUILD_TOOL_TESTS, and BUILD_DOCS_TESTS to ON.

OFF ON OFF

BUILD_LIBRARY_TESTSBuild the AML-IP library tests. It is set to ON if BUILD_TESTS is set to ON. OFF ON OFF
BUILD_TOOL_TESTSBuild the AML-IP application tests. It is set to ON if BUILD_TESTS is set to

ON.
OFF ON OFF

BUILD_DOCS_TESTSBuild the AML-IP documentation tests. It is set to ON if BUILD_TESTS is set
to ON.

OFF ON OFF

BUILD_MANUAL_TESTSBuild the AML-IP manual tests only if BUILD_TESTS is set to ON. OFF ON OFF
LOG_INFO Activate AML-IP execution logs. It is set to ON if CMAKE_BUILD_TYPE is set

to Debug.
OFF ON ON if

Debug OFF
otherwise

ASAN_BUILDActivate address sanitizer build. OFF ON OFF
TSAN_BUILDActivate thread sanitizer build. OFF ON OFF

3.19 Enabling technologies

This page describes the different technologies that support the development of the AML-IP. These focus on the commu-
nication between nodes, the protocols used to support such communication and the libraries and tools used to handle
the different types of data to be transmitted.

3.19.1 DDS (Data Distribution Service)

DDS is a distributed dynamic real-time middleware protocol based on a specification defined by the OMG. It relies on
the underlying RTPS wire protocol.

AML-IP framework relies on DDS communication protocol to connect and communicate each of its Nodes. DDS
protocol support publications and subscriptions in different Topics in order to create a distributed network of entities
where communication takes place peer-to-peer, avoiding centralized systems and creating an homogeneous and stand-
alone network. DDS relies on QoS to configure different characteristics for each of the communication channels,
allowing to create really dynamic and complex networks.

3.19. Enabling technologies 77

AML-IP Documentation, Release ..

Fast DDS

AML-IP uses eProsima Fast DDS, a C++ open-source library that implements DDS specification. eProsima Fast DDS
has all the features and characteristics needed to power AML-IP communications. A whole documentation for the Fast
DDS project can be found in Fast DDS Documentation.

3.20 Internal Protocols

This page briefly describes the protocols developed on top of DDS that enable AML-IP node communications as well
as the deployment of the different scenarios presented in the user manual of this documentation.

3.20.1 DDS Topics

All the AML-IP Topics in the DDS AML-IP network have a previous name mangling. So an AML-IP topic named ,
some_topic would actually be named amlip::some_topic in the underneath DDS network.

3.20.2 MultiService over DDS

A new communication protocol based on DDS has been designed in order to fulfill the necessity of distributing a task
in a network. The idea is a Service protocol based on Client-Server communication where multiple servers could be
available at the same time in the same network. This protocol creates an auto-regulated orchestration method where a
task could be distributed to one and only one server that is publicly available, and each server receives no more than
one task at a time.

3.20.3 RPC over DDS

The Remote Procedure Call based on DDS has been implemented to meet the need to distribute requests and replies
across a network.

Unlike how it is implemented in ROS 2 (with Fast DDS as middleware), topic mangling is used for the communication
between the servers and clients.

The following diagram illustrates the flow of the implementation:

3.20.4 DDS Entities properties

Every AML-IP entity within the AML-IP network is associated with predefined properties that encompass the entity’s
identification and metadata.

• The fastdds.application.metadata property is a JSON object that provides detailed information about the
entity:

– Internal: Specifies the name of the node.

– Entity: expound the DDS entity.

– Topic: define the topic name.

• The fastdds.application.id property uniquely identifies the DDS application to which the entity belongs,
in this case AML_IP.

For a practical illustration, consider a Writer in a TestNode publishing on the /test topic. The corresponding C++ code
snippet for configuring the DataWriter QoS properties is as follows:

78 Chapter 3. Structure of the documentation

https://fast-dds.docs.eprosima.com/en/v2.3.0/

AML-IP Documentation, Release ..

nlohmann::json property_value;

property_value["Internal"] = "TestNode";
property_value["Entity"] = "Writer";
property_value["Topic"] = "/test";

eprosima::fastdds::dds::DataWriterQos qos_request_availability_writer_ = default_request_
→˓availability_writer_qos_();

qos_request_availability_writer_.properties().properties().emplace_back("fastdds.
→˓application.metadata",

property_value.dump(), true);

qos_request_availability_writer_.properties().properties().emplace_back("fastdds.
→˓application.id",

"AML_IP", true);

To retrieve the QoS, the following code can be used:

const std::string* application_id =
eprosima::fastrtps::rtps::PropertyPolicyHelper::find_property(

datareader_locked->get_qos().properties(), "fastdds.application.id");

3.20. Internal Protocols 79

AML-IP Documentation, Release ..

3.21 Version v0.2.0

This release adds new features:

• Support Fast CDR v2.2.0.

• Implement asynchronous request model in ModelManagerReceiver.

• Add fastdds.application.id property to participants and endpoints.

• Add fastdds.application.metadata property to participants and endpoints.

• Add MainNode costructor with domain parameter in Python bindings.

• Add Python bindings for Agent Nodes.

• Rename agent_tool package to amlip_agent.

This includes the following Bugfixes:

• Update AsyncComputingNode and AsyncInferenceNode to only stop if the current state is running and only
run if the current state is stopped.

• ASAN (Address Sanitizer) fixes.

• Fix allowlist namespacing in AgentNode.

• Call change status in AsyncComputingNode.

This release includes the following CI improvements:

• Migrate CI actions to use eProsima-CI.

• Include branch environment variables in CI configuration.

This release add new Documentation features:

• Add instructions to build the Docker image.

• Add Agent Tool section.

• Add Enabling Technologies and Internal Protocols sections.

This release includes the following Dependencies Update:

Repository Old Version New Version
Foonathan Memory Vendor eProsima/foonathan_memory_vendor v1.3.1 v1.3.1
Fast CDR eProsima/Fast-CDR v1.1.0 v2.2.1
Fast DDS eProsima/Fast-DDS v2.11.0 v2.14.0
Dev Utils eProsima/dev-utils v0.4.0 v0.6.0
DDS Pipe eProsima/DDS-Pipe v0.2.0 v0.4.0
DDS Router eProsima/DDS-Router v2.0.0 v2.2.0

80 Chapter 3. Structure of the documentation

https://github.com/eProsima/foonathan_memory_vendor
https://github.com/eProsima/foonathan_memory_vendor/releases/tag/v1.3.1
https://github.com/eProsima/foonathan_memory_vendor/releases/tag/v1.3.1
https://github.com/eProsima/Fast-CDR
https://github.com/eProsima/Fast-CDR/releases/tag/v1.1.0
https://github.com/eProsima/Fast-CDR/releases/tag/v2.2.1
https://github.com/eProsima/Fast-DDS
https://github.com/eProsima/Fast-DDS/releases/tag/v2.11.0
https://github.com/eProsima/Fast-DDS/releases/tag/v2.14.0
https://github.com/eProsima/dev-utils
https://github.com/eProsima/dev-utils/releases/tag/v0.4.0
https://github.com/eProsima/dev-utils/releases/tag/v0.6.0
https://github.com/eProsima/DDS-Pipe.git
https://github.com/eProsima/DDS-Pipe/releases/tag/v0.3.0
https://github.com/eProsima/DDS-Pipe/releases/tag/v0.4.0
https://github.com/eProsima/DDS-Router.git
https://github.com/eProsima/DDS-Router/releases/tag/v2.0.0
https://github.com/eProsima/DDS-Router/releases/tag/v2.2.0

AML-IP Documentation, Release ..

3.22 Previous Versions

3.22.1 Version v0.1.0

This is the first release of eProsima AML-IP (Algebraic Machine Learning - Integrating Platform).

This release includes the following User Interface features:

• C++ API

• Python API

• Add implementation of DDS entities.

• Add implementation of Multiservice protocol.

• Add implementation of Asynchronous Multiservice protocol.

• New internal package amlip_demo_nodes to include the demos packages.

• Dockerfile for creating a docker image with AML-IP.

• Add Custom RPC communication over DDS.

This release supports the following Deployment Scenarios:

• Monitor State

• Workload Distribution

• Collaborative Learning

• Distributed Inference

This release includes the following new AML-IP Nodes:

• Status: node that listens to other nodes status.

• Main: node that sends training data and collects the solution to that data.

• Computing: node that waits for training data and retrieves a solution.

• Edge: node that sends data and waits for the inferred solution.

• Inference: node that waits for data and retrieves an inference.

• Agent: node in charge of the communication with the network.

– Client

– Server

– Repeater

• Model Manager Receiver: node that receives statistical data from models and sends requests to those models.

• Model Manager Sender: node that sends statistical data from models, receives requests and sends replies to those
requests.

This release includes the following new AML-IP Data Types:

• Status: status messages sent by each node with its id, type and current state.

• Job: messages that represent training data.

• Job Solution: messages that represent the solution for a given set of training data.

• Inference: messages that represent a partial data-set.

3.22. Previous Versions 81

AML-IP Documentation, Release ..

• Inference Solution: messages that represent the inference of a data-set.

• Model Statistics: messages that represent statistical data from models.

• Model: messages that represent a problem model request.

• Model Solution: messages that represent a problem reply with the requested model.

This release includes the following Demos:

• Collaborative Learning

• TensorFlow Inference

• TensorFlow Inference using ROSbot 2R

• Workload Distribution

This release includes the following Documentation features:

• This same Documentation

• API Code Documentation

This release includes the following Continuous Integration features:

• Continuous Integration deployment in GitHub Actions.

• Compile with -Wall flag Clang job.

• Add Address Sanitizer check to all tests.

• Add Python Liner test to the Python API.

• Disable Data Sharing from test.

3.23 Glossary

API Application Programming Interface

CI Continuous Integration

OOP Object Oriented Programming

OS Operating System

3.23.1 AML-IP

Action Each of the steps in which any calculation or communication process is divided.

AML-IP Algebraic Machine Learning - Integrating Platform

Scenario Set of Actions that performs a whole, independent and self-contained behavior inside an AML network. More
information in User Manual section.

Node Independent and stand-alone piece of software that performs different Actions. Each Node belongs to one and
only one Scenario. More information in User Manual section.

82 Chapter 3. Structure of the documentation

https://github.com/eProsima/AML-IP/actions

AML-IP Documentation, Release ..

3.23.2 AML

AML Algebraic Machine Learning

Atomization Specific state of an AML model.

ML Machine Learning

3.23.3 DDS

DDS Data Distribution Service protocol. Specification: https://www.omg.org/spec/DDS/. More information in User
Manual section.

Domain Id Virtual partition for DDS networks.

Endpoint Individual Entity that can Subscribe or Publish in a specific Topic.

Publish To send a data or message to all the entities in the network subscribed to the same Topic in which the data is
being published.

RTPS Real-time Publish-Subscribe protocol https://www.omg.org/spec/DDSI-RTPS/.

Subscribe To connect to a specific Topic and to receive messages published in such topic.

Topic An abstract channel of communication that connects Publishers that Publish and Subscribers that Subscribe.

OMG Object Management Group https://www.omg.org/.

QoS Quality of Service. Configurations of Topic and Endpoint that allow to specify the communication behavior.
This allows to create reliable or best-effort communication channels, to determine the life of a data sent, to set
internal configurations, etc.

3.23.4 Networking

IP

• Internet Protocol

LAN Local Area Network

NAT Network Address Translation: Typically an internet router multiplexes all the traffic through a public IP to
several private IPs. Usually, the machines under the router network cannot be accessed from the outside unless
a Port is forwarded in the router configuration, or if such host has previously started a TCP communication with
the message source.

P2P Peer to Peer

TCP Transmission Control Protocol

UDP User Datagram Protocol

URL Uniform Resource Locator

WAN Wide Area Network

3.23. Glossary 83

https://www.omg.org/spec/DDS/
https://www.omg.org/spec/DDSI-RTPS/
https://www.omg.org/

AML-IP Documentation, Release ..

84 Chapter 3. Structure of the documentation

INDEX

A
Action, 82
AML, 83
AML-IP, 82
API, 82
Atomization, 83

C
CI, 82

D
DDS, 83
Domain Id, 83

E
Endpoint, 83

I
IP, 83

L
LAN, 83

M
ML, 83

N
NAT, 83
Node, 82

O
OMG, 83
OOP, 82
OS, 82

P
P2P, 83
Publish, 83

Q
QoS, 83

R
RTPS, 83

S
Scenario, 82
Subscribe, 83

T
TCP, 83
Topic, 83

U
UDP, 83
URL, 83

W
WAN, 83

85

	Contacts and Commercial support
	Contributing to the documentation
	Structure of the documentation
	Overview
	Contacts and Commercial support
	Contributing to the documentation
	Structure of the documentation
	AML-IP on Windows
	AML-IP on Linux
	Docker image
	Project Overview
	AML
	AML-IP
	Usage
	C++
	Python

	Architecture and Infrastructure
	Testing and CI

	Collaborative Learning
	Background
	Prerequisites
	Building the demo
	Explaining the demo
	Model Manager Receiver Node
	Model Manager Sender Node

	Running the demo
	Run Model Manager Receiver Node
	Run Model Manager Sender Node

	TensorFlow Inference
	Background
	Prerequisites
	Building the demo
	Explaining the demo
	Edge Node
	Inference Node

	Run demo
	Run Edge Node
	Run Inference Node
	Next steps

	Run multiple nodes of each kind
	How to use your own model
	Troubleshooting
	TensorFlow using old API

	Next Steps

	TensorFlow Inference using ROSbot 2R
	Background
	Prerequisites
	ROSbot 2R Deployment
	Working with AML-IP
	Edge Node
	Inference Node

	Run demo
	Bring up ROSbot 2R and run Edge Node
	Run Inference Node
	Teleoperate ROSbot 2R

	Workload Distribution
	Simulation
	AML Mock
	Main Node
	Automatic version
	Manual version

	Computing Node

	Installation
	Run demo
	Run Main Node
	Run Computing Node

	Bigger scenarios

	AML-IP Scenarios
	Monitor Network State Scenario
	Status Data Type
	Nodes

	Workload Distribution Scenario
	Job Data Type
	Job Solution Data Type

	Collaborative Learning Scenario
	Model Request Data Type
	Model Reply Data Type
	Model Statistics Data Type

	Distributed Inference Scenario
	Inference Data Type
	Inference Solution Data Type

	AML-IP Node
	Nodes attributes
	Node Id
	Node Kind

	Node Kinds
	Agent Node
	Client Node
	Steps

	Server Node
	Steps

	Repeater Node
	Steps

	Status Node
	Example of Usage
	Steps

	Main Node
	Synchronous
	Steps

	Asynchronous
	Steps

	Computing Node
	Synchronous
	Steps

	Asynchronous
	Steps

	Edge Node
	Synchronous
	Steps

	Asynchronous
	Steps

	Inference Node
	Synchronous
	Steps

	Asynchronous
	Steps

	Model Manager Receiver Node
	Example of Usage
	Steps

	Model Manager Sender Node
	Example of Usage
	Steps

	AML-IP Tools
	Agent Tool
	Building the tool
	Application Arguments
	Help Argument

	Run tool
	Close tool

	Linux installation from sources
	Sub-packages
	Dependencies
	CMake, g++, pip, wget and git
	Asio and TinyXML2 libraries
	OpenSSL
	yaml-cpp
	SWIG
	Colcon
	Gtest
	eProsima dependencies

	Installation methods
	Linux installation from sources using colcon
	Installation
	Download eProsima dependencies
	Build packages
	Run Tests

	Source installation
	Build demos

	Linux installation from sources using CMake
	Local installation
	Global installation

	Windows installation from sources
	Sub-packages
	Dependencies
	Visual Studio
	Chocolatey
	CMake, pip3, wget and git
	Asio and TinyXML2 libraries
	OpenSSL
	yaml-cpp
	SWIG
	Colcon
	Gtest
	eProsima dependencies

	Installation methods
	Windows installation from sources using colcon
	Installation
	Download eProsima dependencies
	Build packages
	Run Tests

	Source installation
	Build demos

	Windows installation from sources using CMake
	Local installation
	Global installation

	CMake options
	Enabling technologies
	DDS (Data Distribution Service)
	Fast DDS

	Internal Protocols
	DDS Topics
	MultiService over DDS
	RPC over DDS
	DDS Entities properties

	Version v0.2.0
	Previous Versions
	Version v0.1.0

	Glossary
	AML-IP
	AML
	DDS
	Networking

	Index

